Cutting through Regular Post Embedding Problems

  • Prateek Karandikar
  • Philippe Schnoebelen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7353)


The Regular Post Embedding Problem extended with partial (co)directness is shown decidable. This extends to universal and/or counting versions. It is also shown that combining directness and codirectness in Post Embedding problems leads to undecidability.


Regular Language Partial Directness Reachability Problem Universal Variant Left Margin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. Information and Computation 127(2), 91–101 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Chambart, P., Schnoebelen, P.: Post Embedding Problem Is Not Primitive Recursive, with Applications to Channel Systems. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 265–276. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Chambart, P., Schnoebelen, P.: Mixing Lossy and Perfect Fifo Channels. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 340–355. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Chambart, P., Schnoebelen, P.: The ω-Regular Post Embedding Problem. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 97–111. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Chambart, P., Schnoebelen, P.: The ordinal recursive complexity of lossy channel systems. In: Proc. LICS 2008, pp. 205–216. IEEE Comp. Soc. Press (2008)Google Scholar
  6. 6.
    Chambart, P., Schnoebelen, P.: Computing Blocker Sets for the Regular Post Embedding Problem. In: Gao, Y., Lu, H., Seki, S., Yu, S. (eds.) DLT 2010. LNCS, vol. 6224, pp. 136–147. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Chambart, P., Schnoebelen, P.: Pumping and Counting on the Regular Post Embedding Problem. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010, Part II. LNCS, vol. 6199, pp. 64–75. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Fairtlough, M., Wainer, S.S.: Hierarchies of provably recursive functions. In: Buss, S. (ed.) Handbook of Proof Theory. Studies in Logic, ch. 3, vol. 137, pp. 149–207. Elsevier Science (1998)CrossRefGoogle Scholar
  9. 9.
    Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theoretical Computer Science 256(1-2), 63–92 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Jančar, P., Karandikar, P., Schnoebelen, P.: Unidirectional channel systems can be tested (in preparation, 2012)Google Scholar
  11. 11.
    Muscholl, A.: Analysis of Communicating Automata. In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 50–57. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Schmitz, S., Schnoebelen, P.: Multiply-Recursive Upper Bounds with Higman’s Lemma. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 441–452. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Prateek Karandikar
    • 1
  • Philippe Schnoebelen
    • 2
  1. 1.Chennai Mathematical InstituteIndia
  2. 2.LSV, ENS Cachan, CNRSFrance

Personalised recommendations