Advertisement

Worst-Case Optimal Priority Queues via Extended Regular Counters

  • Amr Elmasry
  • Jyrki Katajainen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7353)

Abstract

We consider the classical problem of representing a collection of priority queues under the operations find-min, insert, decrease, meld, delete, and delete-min. In the comparison-based model, if the first four operations are to be supported in constant time, the last two operations must take at least logarithmic time. Brodal showed that his worst-case efficient priority queues achieve these worst-case bounds. Unfortunately, this data structure is involved and the time bounds hide large constants. We describe a new variant of the worst-case efficient priority queues that relies on extended regular counters and provides the same asymptotic time and space bounds as the original. Due to the conceptual separation of the operations on regular counters and all other operations, our data structure is simpler and easier to describe and understand. Also, the constants in the time and space bounds are smaller.

Keywords

Priority Queue Active Violation Numeral System Violation Structure Element Comparison 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brodal, G.S.: Fast Meldable Priority Queues. In: Sack, J.-R., Akl, S.G., Dehne, F., Santoro, N. (eds.) WADS 1995. LNCS, vol. 955, pp. 282–290. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  2. 2.
    Brodal, G.S.: Worst-Case Efficient Priority Queues. In: 7th ACM-SIAM Symposium on Discrete Algorithms, pp. 52–58. ACM/SIAM, New York/Philadelphia (1996)Google Scholar
  3. 3.
    Clancy, M.J., Knuth, D.E.: A Programming and Problem-Solving Seminar. Report STAN-CS-77-606. Computer Science Department, Stanford University, Stanford (1977)Google Scholar
  4. 4.
    Driscoll, J.R., Gabow, H.N., Shrairman, R., Tarjan, R.E.: Relaxed Heaps: An Alternative to Fibonacci Heaps with Applications to Parallel Computation. Commun. ACM 31(11), 1343–1354 (1988)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Elmasry, A., Jensen, C., Katajainen, J.: Multipartite Priority Queues. ACM Trans. Algorithms 5(1), Article 14 (2008)Google Scholar
  6. 6.
    Elmasry, A., Jensen, C., Katajainen, J.: Two-tier Relaxed Heaps. Acta Inform. 45(3), 193–210 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Elmasry, A., Jensen, C., Katajainen, J.: Strictly-Regular Number System and Data Structures. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 26–37. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Elmasry, A., Katajainen, J.: Worst-Case Optimal Priority Queues Via Extended Regular Counters, Ithaca, E-print arXiv:1112.0993. arXiv.org (2011)Google Scholar
  9. 9.
    Elmasry, A., Katajainen, J.: Fat Heaps without Regular Counters. In: Rahman, M. S., Nakano, S.-I. (eds.) WALCOM 2012. LNCS, vol. 7157, pp. 173–185. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Fredman, M.L., Tarjan, R.E.: Fibonacci Heaps and their Uses in Improved Network Optimization Algorithms. J. ACM 34(3), 596–615 (1987)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kaplan, H., Shafrir, N., Tarjan, R.E.: Meldable Heaps and BOolean Union-Find. In: 34th Annual ACM Symposium of Theory of Computing, pp. 573–582. ACM, New York (2002)Google Scholar
  12. 12.
    Kaplan, H., Tarjan, R.E.: New Heap Data Structures. Report TR-597-99. Department of Computer Science, Princeton University, Princeton (1999)Google Scholar
  13. 13.
    Vuillemin, J.: A Data Structure for Manipulating Priority Queues. Commun. ACM 21(4), 309–315 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Williams, J.W.J.: Algorithm 232: Heapsort. Commun. ACM 7(6), 347–348 (1964)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Amr Elmasry
    • 1
  • Jyrki Katajainen
    • 1
  1. 1.Department of Computer ScienceUniversity of CopenhagenDenmark

Personalised recommendations