Bounded Synchronization Delay in Omega-Rational Expressions

  • Volker Diekert
  • Manfred Kufleitner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7353)


In 1965 Schützenberger published his famous result that star-free languages (SF) and aperiodic languages (AP) coincide over finite words, often written as SF = AP. Perrin generalized SF = AP to infinite words in the mid 1980s. In 1973 Schützenberger presented another (and less known) characterization of aperiodic languages in terms of rational expressions where the use of the star operation is restricted to prefix codes with bounded synchronization delay and no complementation is used. We denote this class of languages by SD. In this paper, we present a generalization of SD = AP to infinite words. This became possible via a substantial simplification of the proof for the corresponding result for finite words. Moreover, we show that SD = AP can be viewed as more fundamental than SF = AP in the sense that the classical 1965 result of Schützenberger and its 1980s extension to infinite words by Perrin are immediate consequences of SD = AP.


Linear Temporal Logic Tense Logic Prefix Code Formal Language Theory Infinite Word 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnold, A.: A syntactic congruence for rational ω-languages. Theoretical Computer Science 39, 333–335 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Diekert, V., Gastin, P.: Pure future local temporal logics are expressively complete for Mazurkiewicz traces. Information and Computation 204, 1597–1619 (2006); Conference version in LATIN 2004. LNCS, vol. 2976, pp. 170–182 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Diekert, V., Gastin, P.: First-order definable languages. In: Logic and Automata: History and Perspectives. Texts in Logic and Games, pp. 261–306. Amsterdam University Press (2008)Google Scholar
  4. 4.
    Diekert, V., Kufleitner, M., Steinberg, B.: The Krohn-Rhodes Theorem and local divisors. arXiv, abs/1111.1585 (2011)Google Scholar
  5. 5.
    Golomb, S.W., Gordon, B.: Codes with bounded synchronization delay. Information and Control 8(4), 355–372 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Kamp, J.A.W.: Tense Logic and the Theory of Linear Order. PhD thesis, University of California, Los Angeles, California (1968)Google Scholar
  7. 7.
    McNaughton, R., Papert, S.: Counter-Free Automata. The MIT Press (1971)Google Scholar
  8. 8.
    Meyberg, K.: Lectures on algebras and triple systems. Technical report, University of Virginia, Charlottesville (1972)Google Scholar
  9. 9.
    Perrin, D.: Recent Results on Automata and Infinite Words. In: Chytil, M.P., Koubek, V. (eds.) MFCS 1984. LNCS, vol. 176, pp. 134–148. Springer, Heidelberg (1984)CrossRefGoogle Scholar
  10. 10.
    Perrin, D., Pin, J.-É.: Infinite words. Pure and Applied Mathematics, vol. 141. Elsevier, Amsterdam (2004)zbMATHGoogle Scholar
  11. 11.
    Pin, J.-É.: Varieties of Formal Languages. North Oxford Academic, London (1986)zbMATHCrossRefGoogle Scholar
  12. 12.
    Schützenberger, M.P.: On finite monoids having only trivial subgroups. Inf. Control 8, 190–194 (1965)zbMATHCrossRefGoogle Scholar
  13. 13.
    Schützenberger, M.P.: Sur certaines opérations de fermeture dans les langages rationnels. In: Symposia Mathematica, Convegno di Informatica Teorica, INDAM, Roma, 1973, vol. XV, pp. 245–253. Academic Press, London (1975)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Volker Diekert
    • 1
  • Manfred Kufleitner
    • 1
  1. 1.FMIUniversity of StuttgartGermany

Personalised recommendations