Chapter 4 Linear Models with One Variable

  • Dieter M. Imboden
  • Stefan Pfenninger


In the remaining part of the book, we will exclusively deal with dynamic models. As we already noted in the introduction, one of the principal characteristics of natural systems is that they are not static.


Adjustment Time External Relation Tritium Concentration Sewage Plant Substance Input 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramowitz M, Stegun IA (1972) Handbook of mathematical functions. Wiley, New YorkGoogle Scholar
  2. Arrowsmith DK, Place CM (1992) Dynamical systems: differential equations, maps and chaotic behaviour. Chapman and Hall, LondonGoogle Scholar
  3. Crank J (1975) The Mathematics of Diffusion. Clarendon Press, OxfordGoogle Scholar
  4. Domenico PA, Schwartz FW (1998) Physical and Chemical Hydrology. 2. Ed., Wiley, New YorkGoogle Scholar
  5. Forster, P., V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, J. Lean, D.C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz and R. Van Dorland (2007) Changes in Atmospheric Constituents and in Radiative Forcing. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Google Scholar
  6. Haderlein SB, Weissmahr K, Schwarzenbach RP (1996) Specific adsorption of nitroaromatic explosives and pesticides to clay minerals. Environ. Sci. Technol. 30:612–622Google Scholar
  7. Krebs CJ (2001) Ecology: The Experimental Analysis of Distribution and Abundance. Benjamin Cummings, San Francisco, 5. Ed.Google Scholar
  8. Lerman A (1972) Strontium-90 in the great lakes: Concentration-time model. J. Geophys. Res. 77:3256–3264Google Scholar
  9. Lotka AJ (1924) Elements of Physical Biology. Williams and Wilkins Co, Inc. Republished by Dover Publications, New York 1956, under the title Elements of Mathematical Biology Google Scholar
  10. Luenberger DG (1979) Introduction to Dynamic Systems. Wiley, New YorkGoogle Scholar
  11. May RM (1974) Stability and complexity in model ecosystems. Princeton University Press, 2nd Ed.Google Scholar
  12. May RM and McLean AR (eds) (2007) Theoretical Ecology: Principles and Applications. Oxford University Press, New York, 3rd Ed.Google Scholar
  13. MacLulich DA (1937) Fluctuations in the numbers of the varying hare (Lepus americanus). Univ. Toronto Studies, Biol. Ser. 43Google Scholar
  14. Meadows DH, Meadows DL, Randers J, Behrens WW (1972) The Limits to Growth. Universe Books, New YorkGoogle Scholar
  15. Meijer ML (2000) Biomanipulation in the Netherlands—15 Years of Experience. Wageningen Univ, WageningenGoogle Scholar
  16. Moore WS, Berrien III, Brasswell BH (1994) The lifetime of excess atmospheric carbon dioxide. Glob. Biogeochem. Cycl. 8:23–38Google Scholar
  17. Odum EP (1971) Fundamentals of Ecology. Saunders, PhiladelphiaGoogle Scholar
  18. Pearl R, Reed LJ (1920) On the rate of growth of the population of the United States since 1790 and its mathematical representation. Proc. Nat. Acad. Csi. U.S. 6:275–288Google Scholar
  19. Samuelson PA, Nordhaus W (2009) Economics. McGraw-Hill, New York, 19th Ed.Google Scholar
  20. Schwarzenbach RP, Gschwend PM, Imboden DM (2003) Environmental Organic Chemistry, 2nd edition. Wiley, New YorkGoogle Scholar
  21. Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (2002) Catastrophic shifts in ecosystems. Nature 413:591–596Google Scholar
  22. Strogatz SH (1994) Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. Westview Press, BoulderGoogle Scholar
  23. Verhulst PF (1838) Notice sur la loi que la population suit dans son accroissement. Corresp. Math. Phys. 10:113–121Google Scholar
  24. Vollenweider RA (1976) Advances in defining critical loading levels for phosphorus in lake eutrophication. Mem. Ist. Ital. Idrobiol. 33:53–83Google Scholar
  25. Volterra V (1926) Fluctuations in the abundance of a species considered mathematically. Nature 118:558–560Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Dieter M. Imboden
    • 1
  • Stefan Pfenninger
    • 2
  1. 1.Department of Environmental Systems ScienceETH ZurichZurichSwitzerland
  2. 2.International Institute for Applied Systems Analysis (IIASA)LaxenburgAustria

Personalised recommendations