Towards Large-Scale Network Virtualization

  • Panagiotis Papadimitriou
  • Ines Houidi
  • Wajdi Louati
  • Djamal Zeghlache
  • Christoph Werle
  • Roland Bless
  • Laurent Mathy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7277)

Abstract

Most existing virtual network (VN) provisioning approaches assume a single administrative domain and therefore, VN deployments are limited to the geographic footprint of the substrate provider. To enable wide-area VN provisioning, network virtualization architectures need to address the intricacies of inter-domain aspects, i.e., how to provision VNs with limited control and knowledge of any aspect of the physical infrastructure.

To this end, we present a framework for large-scale VN provisioning. We decompose VN provisioning into multiple steps to overcome the implications of limited information on resource discovery and allocation. We present a new resource selection algorithm with simultaneous node and link mapping to assign resources within each domain. We use a signaling protocol that integrates resource reservations for virtual link setup with Quality-of-Service guarantees. Our experimental results show that small VNs can be provisioned within a few seconds.

Keywords

Virtual Network Virtual Node Resource Reservation Resource Discovery Virtual Link 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Ash, G., Bader, A., Kappler, C., Oran, D.: QSPEC Template for the Quality-of-Service NSIS Signaling Layer Protocol (NSLP), RFC 5975 (October 2010)Google Scholar
  3. 3.
    Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I., Warfield, A.: Xen and the Art of Virtualization. In: Proc. 19th ACM Symposium on OS Principles, Bolton Landing, NY, USA (October 2003)Google Scholar
  4. 4.
    Bless, R., Röhricht, M., Werle, C.: Authenticated Setup of Virtual Links with Quality-of-Service Guarantees. In: Proc. IEEE ICCCN 2011, Hawaii, USA (July 2011)Google Scholar
  5. 5.
    Chowdhury, M., Rahman, M., Boutaba, R.: Virtual Network Embedding with Coordinated Node and Link Mapping. In: Proc. IEEE Infocom 2009, Rio de Janeiro, Brazil (April 2009)Google Scholar
  6. 6.
    Chowdhury, M., Samuel, F., Boutaba, R.: PolyViNE: Policy-based Virtual Network Embedding Across Multiple Domains. In: Proc. ACM SIGCOMM VISA, New Delhi, India (September 2010)Google Scholar
  7. 7.
    GENI: Global Environment for Network Innovations, http://www.geni.net
  8. 8.
    Hancock, R., Karagiannis, G., Loughney, J., Van den Bosch, S.: Next Steps in Signaling (NSIS) Framework, RFC 4080 (June 2005)Google Scholar
  9. 9.
    Heterogeneous Experimental Network, http://hen.cs.ucl.ac.uk
  10. 10.
    Houidi, I., Louati, W., Bean-Ameur, W., Zeghlache, D.: Virtual Network Provisioning Across Multiple Substrate Networks. Computer Networks 55(4) (March 2011)Google Scholar
  11. 11.
    Kohler, E., Morris, R., Chen, B., Jahnotti, J., Kasshoek, M.F.: The Click Modular Router. ACM Transaction on Computer Systems 18(3) (2000)Google Scholar
  12. 12.
    Lu, J., Turner, J.: Efficient Mapping of Virtual Networks onto a Shared Substrate. Washington University. Technical Report WUCSE-2006-35 (2006)Google Scholar
  13. 13.
    Manner, J., Karagiannis, G., McDonald, A.: NSIS Signaling Layer Protocol (NSLP) for Quality-of-Service Signaling, RFC 5974 (October 2010)Google Scholar
  14. 14.
    NSIS-ka, A free C++ implementation of NSIS protocols, KIT, https://svn.tm.kit.edu/trac/NSIS
  15. 15.
    Schaffrath, G., Werle, C., Papadimitriou, P., Feldmann, A., Bless, R., Greenhalgh, A., Wundsam, A., Kind, M., Maennel, O., Mathy, L.: Network Virtualization Architecture: Proposal and Initial Prototype. In: Proc. ACM SIGCOMM VISA, Barcelona, Spain (August 2009)Google Scholar
  16. 16.
    Yu, M., Yi, Y., Rexford, J., Chiang, M.: Rethinking Virtual Network Embedding: Substrate Support for Path Splitting and Migration. ACM SIGCOMM Computer Communications Review 38(2), 17–29 (2008)CrossRefGoogle Scholar
  17. 17.
    Zhu, Y., Ammar, M.: Algorithms for Assigning Substrate Network Resources to Virtual Network Components. In: Proc. IEEE Infocom, Barcelona, Spain (April 2006)Google Scholar
  18. 18.
    Zu, Y., Zhang-Shen, R., Rangarajan, S., Rexford, J.: Cabernet: Connectivity Architecture for Better Network Services. In: Proc. ACM ReArch 2008, Madrid, Spain (December 2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Panagiotis Papadimitriou
    • 1
  • Ines Houidi
    • 2
  • Wajdi Louati
    • 2
  • Djamal Zeghlache
    • 2
  • Christoph Werle
    • 3
  • Roland Bless
    • 3
  • Laurent Mathy
    • 4
  1. 1.Institute of Communications TechnologyLeibniz University of HannoverGermany
  2. 2.Institut TelecomTelecom SudParisFrance
  3. 3.Karlsruhe Institute of TechnologyGermany
  4. 4.Computing DepartmentLancaster UniversityUK

Personalised recommendations