Non-iterative Multi-modal Partial View to Full View Image Registration Using Local Phase-Based Image Projections

  • Ilker Hacihaliloglu
  • David R. Wilson
  • Michael Gilbart
  • Michael Hunt
  • Purang Abolmaesumi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7330)


Accurate registration of patient anatomy, obtained from intra-operative ultrasound (US) and preoperative computed tomography (CT) images, is an essential step to a successful US-guided computer assisted orthopaedic surgery (CAOS). Most state-of-the-art registration methods in CAOS require either significant manual interaction from the user or are not robust to the typical US artifacts. Furthermore, one of the major stumbling blocks facing existing methods is the requirement of an optimization procedure during the registration, which is time consuming and generally breaks when the initial misalignment between the two registering data sets is large. Finally, due to the limited field of view of US imaging, obtaining scans of the full anatomy is problematic, which causes difficulties during registration. In this paper, we present a new method that registers local phase-based bone features in frequency domain using image projections calculated from three-dimensional (3D) radon transform. The method is fully automatic, non-iterative, and requires no initial alignment between the two registering datasets. We also show the method’s capability in registering partial view US data to full view CT data. Experiments, carried out on a phantom and six clinical pelvis scans, show an average 0.8 mm root-mean-square registration error.


3D ultrasound CT registration local phase radon transform noniterative phase correlation computer assisted orthopaedic surgery 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nolte, L.P., Zamorano, L.J., Jiang, Z., Wang, Q., Langlotz, F., Berlemann, F.: Image-guided insertion of transpedicular screws. A Laboratory Set-Up. Spine 20(4), 497–500 (1995)Google Scholar
  2. 2.
    Jaramaz, B., DiGioia, A.M., Blackwell, M., Nikou, C.: Computer assisted measurement of cup placement in total hip replacement. Clinical Orthopaedics 354, 70–81 (1998)CrossRefGoogle Scholar
  3. 3.
    Tyryshkin, K., Mousavi, P., Beek, M., Ellis, R., Dichora, P., Abolmaesumi, P.: A navigation system for shoulder arthroscopic surgery. Journal of Engineering in Medicine: Special Issue on Navigation Systems in Computer-assisted Orthopaedic Surgery, 801–812 (2007)Google Scholar
  4. 4.
    Hacihaliloglu, I., Abugharbieh, R., Hodgson, A., Rohling, R.: Bone Surface Localization in Ultrasound Using Image Phase Based Features. Ultrasound in Med. and Biol. 35(9), 1475–1487 (2009)CrossRefGoogle Scholar
  5. 5.
    Penney, G.P., Edwards, P.J., King, A.P., Blackall, J.M., Batchelor, P.G., Hawkes, D.J.: A Stochastic Iterative Closest Point Algorithm (stochastICP). In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 762–769. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Moghari, M.H., Abolmaesumi, P.: Point-Based Rigid-Body Registration Using an Unscented Kalman Filter. IEEE Transactions on Medical Imaging 26(12), 1708–1728 (2007)CrossRefGoogle Scholar
  7. 7.
    Brounstein, A., Hacihaliloglu, I., Guy, P., Hodgson, A., Abugharbieh, R.: Towards Real-Time 3D US to CT Bone Image Registration Using Phase and Curvature Feature Based GMM Matching. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part I. LNCS, vol. 6891, pp. 235–242. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Brendel, B., Winter, S., Rick, A., Stockheim, M., Ermert, H.: Registration of 3D CT and Ultrasound Datasets of the Spine Using Bone Structures. Computer Aided Surgery 7, 146–155 (2002)CrossRefGoogle Scholar
  9. 9.
    Penney, G., Barratt, D., Chan, C., Slomczykowski, M., Carter, T., Edwards, P., Hawkes, D.: Cadaver Validation of Intensity-Based Ultrasound to CT Registration. Medical Image Analysis 10(3), 385–395 (2006)CrossRefGoogle Scholar
  10. 10.
    Gill, S., Abolmaesumi, P., Fichtinger, G., Boisvert, J., Pichora, D., Borshneck, D., Mousavi, P.: Biomechanically Constrained Groupwise Ultrasound to CT Registration of the Lumbar Spine. Medical Image Analysis (2010) (in Press) Google Scholar
  11. 11.
    Khallaghi, S., Mousavi, P., Borschneck, D., Fichtinger, G., Abolmaesumi, P.: Biomechanically Constrained Groupwise Statistical Shape Model to Ultrasound Registration of the Lumbar Spine. In: Taylor, R.H., Yang, G.-Z. (eds.) IPCAI 2011. LNCS, vol. 6689, pp. 47–54. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Foroughi, P., Boctor, E., Swatrz, M.J., Taylor, R.H., Fichtinger, G.: Ultrasound bone segmentation using dynamic programming. In: IEEE Ultrasonics Syposium, pp. 2523–2526 (2007)Google Scholar
  13. 13.
    Hacihaliloglu, I., Abugharbieh, R., Hodgson, A.J., Rohling, R.: Automatic Bone Localization and Fracture Detection from Volumetric Ultrasound Images Using 3D Local Phase Features. Ultrasound in Medicine and Biology 38(1), 128–144 (2011)CrossRefGoogle Scholar
  14. 14.
    Tsuboi, T., Hirai, S.: Detection of Planar Motion Objects Using Radon Transform and One-Dimensional Phase-Only Matched Filtering. Systems and Computers in Japan 37(5), 1963–1972 (2006)CrossRefGoogle Scholar
  15. 15.
    Gurbuz, A.C., McClellan, J.H., Romberg, J., Scott, W.R.: Compressive sensing of parameterized shapes in images. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1949–1952 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ilker Hacihaliloglu
    • 1
  • David R. Wilson
    • 1
  • Michael Gilbart
    • 1
  • Michael Hunt
    • 2
  • Purang Abolmaesumi
    • 3
  1. 1.Departments of OrthopaedicsUniversity of British ColumbiaVancouverCanada
  2. 2.Physical TherapyUniversity of British ColumbiaVancouverCanada
  3. 3.Electrical and Computer EngineeringUniversity of British ColumbiaVancouverCanada

Personalised recommendations