Model-Based Respiratory Motion Compensation in MRgHIFU

  • Patrik Arnold
  • Frank Preiswerk
  • Beat Fasel
  • Rares Salomir
  • Klaus Scheffler
  • Philippe Cattin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7330)

Abstract

Magnetic Resonance guided High Intensity Focused Ultrasound (MRgHIFU) is an emerging non-invasive technology for the treatment of pathological tissue. The possibility of depositing sharply localised energy deep within the body without affecting the surrounding tissue requires the exact knowledge of the target’s position. The cyclic respiratory organ motion renders targeting challenging, as the treatment focus has to be continuously adapted according to the current target’s displacement in 3D space. In this paper, a combination of a patient-specific dynamic breath model and a population-based statistical motion model is used to compensate for the respiratory induced organ motion. The application of a population based statistical motion model replaces the acquisition of a patient-specific 3D motion model, nevertheless allowing for precise motion compensation.

Keywords

Motion Model Motion Compensation Free Breathing High Intensity Focus Ultrasound Thermal Dose 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ries, M., de Senneville, B.D., Roujol, S., Berber, Y., Quesson, B., Moonen, C.: Real-Time 3D Target Tracking in MRI Guided Focused Ultrasound Ablations in Moving Tissues. Magnetic Resonance in Medicine 64, 1704–1712 (2010)CrossRefGoogle Scholar
  2. 2.
    Ruan, D., Keall, P.: Online Prediction of Respiratory Motion: Multidimensional Processing with Low-Dimensional Feature Learning. Physics in Medicine and Biology 55, 3011–3025 (2010)CrossRefGoogle Scholar
  3. 3.
    Arnold, P., Preiswerk, F., Fasel, B., Salomir, R., Scheffler, K., Cattin, P.C.: 3D Organ Motion Prediction for MR-Guided High Intensity Focused Ultrasound. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS, vol. 6892, pp. 623–630. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Preiswerk, F., Arnold, P., Fasel, B., Cattin, P.C.: A Bayesian Framework for Estimating Respiratory Liver Motion from Sparse Measurements. In: Yoshida, H., Sakas, G., Linguraru, M.G. (eds.) Abdominal Imaging. LNCS, vol. 7029, pp. 207–214. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    von Siebenthal, M., Szekely, G., Gamper, U., Boesiger, P., Lomax, A., Cattin, P.: 4D MR Imaging of Respiratory Organ Motion and its Variability. Phys. in Med. Biol. 52, 1547–1564 (2007)CrossRefGoogle Scholar
  6. 6.
    Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Nonrigid Registration Using Free-Form Deformations: Application to Breast MR Images. Transactions on Medical Imaging 18, 712–721 (1999)CrossRefGoogle Scholar
  7. 7.
    Blanz, V., Vetter, T.: Reconstructing the Complete 3D Shape of Faces from Partial Information. Informationstechnik und Technische Informatik 44, 295–302 (2002)Google Scholar
  8. 8.
    Vedam, S., Kini, V.R., Keall, P.J., Ramakrishnan, V., Mostafavi, H., Mohan, R.: Quantifying the Predictability of Diaphragm Motion During Respiration with a Noninvasive External Marker. Med. Phys. 30, 505–513 (2003)CrossRefGoogle Scholar
  9. 9.
    von Siebenthal, M., Székely, G., Lomax, A.J., Cattin, P.C.: Systematic Errors in Respiratory Gating due to Intrafraction Deformations of the Liver. Med. Phys. 34, 3620–3629 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Patrik Arnold
    • 1
  • Frank Preiswerk
    • 1
  • Beat Fasel
    • 1
  • Rares Salomir
    • 2
  • Klaus Scheffler
    • 3
  • Philippe Cattin
    • 1
  1. 1.Medical Image Analysis CenterUniversity of BaselSwitzerland
  2. 2.Radiology DepartmentUniversity Hospitals of GenevaSwitzerland
  3. 3.Department of NeuroimagingUniversity of TuebingenGermany

Personalised recommendations