Advertisement

Cardiac Unfold: A Novel Technique for Image-Guided Cardiac Catheterization Procedures

  • YingLiang Ma
  • Rashed Karim
  • R. James Housden
  • Geert Gijsbers
  • Roland Bullens
  • Christopher Aldo Rinaldi
  • Reza Razavi
  • Tobias Schaeffter
  • Kawal S. Rhode
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7330)

Abstract

X-ray fluoroscopically-guided cardiac catheterization procedures are commonly carried out for the treatment of cardiac arrhythmias, such as atrial fibrillation (AF) and cardiac resynchronization therapy (CRT). X-ray images have poor soft tissue contrast and, for this reason, overlay of a 3D roadmap derived from pre-procedure volumetric image data can be used to add anatomical information. However, current overlay technologies have the limitation that 3D information is displayed on a 2D screen. Therefore, it is not possible for the cardiologist to appreciate the true positional relationship between anatomical/functional data and the position of the interventional devices. We prose a navigation methodology, called cardiac unfold, where an entire cardiac chamber is unfolded from 3D to 2D along with all relevant anatomical and functional information and coupled to real-time device tracking. This would allow more intuitive navigation since the entire 3D scene is displayed simultaneously on a 2D plot. A real-time unfold guidance platform for CRT was developed, where navigation is performed using the standard AHA 16-segment bull’s-eye plot for the left ventricle (LV). The accuracy of the unfold navigation was assessed in 13 patient data sets by computing the registration errors of the LV pacing lead electrodes and was found to be 2.2 ± 0.9 mm. An unfold method was also developed for the left atrium (LA) using trimmed B-spline surfaces. The method was applied to 5 patient data sets and its utility was demonstrated for displaying information from delayed enhancement MRI of patients that had undergone radio-frequency ablation.

Keywords

Left Ventricle Right Ventricle Cardiac Resynchronization Therapy Delay Enhancement Bezier Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sra, J., Narayan, G., Krum, D., Malloy, A., Cooley, R., Bhatia, A., Dhala, A., Blanck, Z., Nangia, V., Akhtar, M.: Computed tomography-fluoroscopy image integration-guided catheter ablation of atrial fibrillation. Journal of Cardiovascular Electrophysiology 18(4), 409–414 (2007)CrossRefGoogle Scholar
  2. 2.
    Rhode, K.S., Hill, D.L.G., Edwards, P.J., Hipwell, J., Rueckert, D., Sanchez-Ortiz, G., Hegde, S., Rahunathan, V., Razavi, R.: Registration and tracking to integrate X-ray and MR images in an XMR facility. IEEE Transactions on Medical Imaging 24(11), 810–815 (2003)Google Scholar
  3. 3.
    Pruemmer, M., Hornegger, J., Lauritsch, G., Wigstrom, L., Girard-Hughes, E., Fahrig, R.: Cardiac C-arm CT: a unified framework for motion estimation and dynamic CT. IEEE Transactions on Medical Imaging 28(11), 1836–1849 (2009)CrossRefGoogle Scholar
  4. 4.
    Orlov, M.V., Hoffmeister, P., Chaudhry, G.M., Almasry, I., Gijsbers, G.H., Swack, T., Haffajee, C.I.: Three-dimensional rotational angiography of the left atrium and esophagus–A virtual computed tomography scan in the electrophysiology lab. Heart Rhythm 4(1), 37–43 (2007)CrossRefGoogle Scholar
  5. 5.
    Duckett, S.G., Ginks, M.R., et al.: Advanced image fusion to overlay coronary sinus anatomy with real time fluoroscopy to facilitate left ventricular lead implantation in CRT. Pacing Clin. Electrophysiol. 34(2), 226–234 (2010)CrossRefGoogle Scholar
  6. 6.
    Ma, Y., Duckett, S., Chinchapatnam, P., Shetty, A., Aldo Rinaldi, C., Schaeffter, T., Rhode, K.S.: Image and Physiological Data Fusion for Guidance and Modelling of Cardiac Resynchronization Therapy Procedures. In: Camara, O., Pop, M., Rhode, K., Sermesant, M., Smith, N., Young, A. (eds.) STACOM 2010. LNCS, vol. 6364, pp. 105–113. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Manzke, R., Bornstedt, A., et al.: Respiratory motion compensated overlay of surface models from cardiac MR on interventional x-ray fluoroscopy for guidance of cardiac resynchronization therapy procedures. In: SPIE Medical Imaging 2010: Visualization, Image-Guided Procedures, and Modeling, vol. 7625 (2010)Google Scholar
  8. 8.
    Drury, H.A., Van Essen, D.C., et al.: Computerized mappings of the cerebral cortex: a multiresolution flattening method and a surface-based coordinate system. J. Cogn. Neurosci. 8, 1–28 (1996)CrossRefGoogle Scholar
  9. 9.
    Termeer, M., Bescós, J.O., Breeuwer, M., Vilanova, A., Gerritsen, F.A., Gröller, M.E., Nagel, E.: Visualization of myocardial perfusion derived from coronary anatomy. IEEE Trans. Vis. Comput. Graph. 14(6), 1595–1602 (2008)CrossRefGoogle Scholar
  10. 10.
    Peters, J., Ecabert, O., Meyer, C., Schramm, H., Kneser, R., Groth, A., Weese, J.: Automatic Whole Heart Segmentation in Static Magnetic Resonance Image Volumes. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 402–410. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Ma, Y., Saetzler, K.: A parallelized surface extraction algorithm for large binary image data sets based on adaptive 3-D Delaunay subdivision strategy. IEEE Transactions on Visualization and Computer Graphics 14(1), 160–172 (2008)CrossRefGoogle Scholar
  12. 12.
    Karim, R., Mohiaddin, R., Drivas, P., Rueckert, D.: Automatic extraction of the left atrial anatomy from MR for atrial fibrillation ablation. In: Proceedings of IEEE International Symposium on Biomedical Imaging (2009)Google Scholar
  13. 13.
    Ma, Y., King, A., Gogin, N., Gijsbers, G., Rinaldi, C.A., Gill, J., Razavi, R., Rhode, K.: Clinical evaluation of respiratory motion compensation for anatomical roadmap guided cardiac electrophysiology procedures. IEEE Transactions on Biomedical Engineering 59(1), 122–131 (2011)Google Scholar
  14. 14.
    Knowles, B., Caulfield, D., et al.: Three-dimensional visualization of acute radiofrequency ablation lesions using MRI for the simultaneous determination of the patterns of necrosis and edema. IEEE Trans. Biomedical Engineering 57(6), 1467–1475 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • YingLiang Ma
    • 1
  • Rashed Karim
    • 1
  • R. James Housden
    • 1
  • Geert Gijsbers
    • 2
  • Roland Bullens
    • 2
  • Christopher Aldo Rinaldi
    • 3
  • Reza Razavi
    • 1
  • Tobias Schaeffter
    • 1
  • Kawal S. Rhode
    • 1
  1. 1.Division of Imaging Sciences and Biomedical EngineeringKing’s College LondonUK
  2. 2.Interventional X-rayPhilips HealthcareBestThe Netherlands
  3. 3.Department of CardiologyGuy’s & St. Thomas’ Hospitals NHS Foundation TrustLondonUK

Personalised recommendations