Boolean Functions Derived from Pseudorandom Binary Sequences

  • Gottlieb Pirsic
  • Arne Winterhof
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7280)


We study measures used to assess Boolean functions, where the functions are understood to be derived from binary sequences. We prove relations between two complexity measures for these Boolean functions and the correlation measure of order k of the corresponding sequence. More precisely, we study sparsity and combinatorial complexity of the Boolean function. Moreover, for a sequence with ’typical’ values of the correlation measure of order k we apply these relations to derive bounds on the complexity measures for the corresponding Boolean function. Finally, we apply our results to Sidelnikov sequences for which nice upper bounds on the correlation measure are known.


Boolean functions sparsity correlation measure combinatorial complexity cryptography nonlinearity pseudorandomness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alon, N., Kohayakawa, Y., Mauduit, C., Moreira, C.G., Rödl, V.: Measures of pseudorandomness for finite sequences: typical values. Proc. Lond. Math. Soc. 95(3), 778–812 (2007)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Aly, H., Winterhof, A.: Boolean functions derived from Fermat quotients. Cryptogr. Commun. 3, 165–174 (2011)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Brandstätter, N., Lange, T., Winterhof, A.: On the Non-linearity and Sparsity of Boolean Functions Related to the Discrete Logarithm in Finite Fields of Characteristic Two. In: Ytrehus, Ø. (ed.) WCC 2005. LNCS, vol. 3969, pp. 135–143. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Brandstätter, N., Winterhof, A.: Some notes on the two-prime generator of order 2. IEEE Trans. Inform. Theory 51, 3654–3657 (2005)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Brandstätter, N., Winterhof, A.: Linear complexity profile of binary sequences with small correlation measure. Period. Math. Hungar. 52, 1–8 (2006)MATHCrossRefGoogle Scholar
  6. 6.
    Brandstätter, N., Winterhof, A.: Nonlinearity of binary sequences with small autocorrelation. In: Proceedings of the Second International Workshop on Sequence Design and its Applications in Communications (IWSDA 2005), pp. 44–47 (2005)Google Scholar
  7. 7.
    Carlet, C.: Boolean functions for cryptography and error correcting codes. In: Crama, Y., Hammer, P.L. (eds.) Boolean Models and Methods in Mathematics, Computer Science, and Engineering, pp. 257–397. Cambridge University Press (2010)Google Scholar
  8. 8.
    Cusick, T.W., Stănică, P.: Cryptographic Boolean functions and applications. Elsevier/Academic Press, Amsterdam (2009)Google Scholar
  9. 9.
    Harper, L.H., Hsieh, W.N., Savage, J.E.: A class of Boolean functions with linear combinational complexity. Theoret. Comput. Sci. 1, 161–183 (1975)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Lange, T., Winterhof, A.: Arne Interpolation of the discrete logarithm in F q by Boolean functions and by polynomials in several variables modulo a divisor of q − 1. In: International Workshop on Coding and Cryptography (WCC 2001), Paris. Discrete Appl. Math., vol. 128, pp. 193–206 (2003)Google Scholar
  11. 11.
    Lange, T., Winterhof, A.: Incomplete character sums over finite fields and their application to the interpolation of the discrete logarithm by Boolean functions. Acta Arith. 101, 223–229 (2002)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Rivat, J., Sárközy, A.: Modular constructions of pseudorandom binary sequences with composite moduli. Period. Math. Hungar. 51, 75–107 (2005)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Mauduit, C., Sárközy, A.: On finite pseudorandom binary sequences. I. Measure of pseudorandomness, the Legendre symbol. Acta Arith. 82, 365–377 (1997)MathSciNetMATHGoogle Scholar
  14. 14.
    Sárközy, A.: On finite pseudorandom binary sequences and their applications in cryptography. Tatra Mt. Math. Publ. 37, 123–136 (2007)MathSciNetMATHGoogle Scholar
  15. 15.
    Shparlinski, I.E.: Cryptographic Applications of Analytic Number Theory: Complexity Lower Bounds and Pseudorandomness. Birkhäuser (2003)Google Scholar
  16. 16.
    Topuzoğlu, A., Winterhof, A.: Pseudorandom sequences. In: Topics in Geometry, Coding Theory and Cryptography. Algebr. Appl., vol. 6, pp. 135–166. Springer, Dordrecht (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Gottlieb Pirsic
    • 1
  • Arne Winterhof
    • 2
  1. 1.Institute for Financial MathematicsKepler University LinzLinzAustria
  2. 2.Johann Radon Institute for Computational and Applied MathematicsAustrian Academy of SciencesLinzAustria

Personalised recommendations