Characterizing Negabent Boolean Functions over Finite Fields

  • Sumanta Sarkar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7280)


We consider negabent Boolean functions that have Trace representation. To the best of our knowledge, this is the first ever work on negabent functions with such representation. We completely characterize negabent quadratic monomial functions. We also present necessary and sufficient condition for a Maiorana-McFarland bent function to be a negabent function. As a consequence of that result we present a nice characterization of a bent-negabent Maiorana-McFarland function which is based on the permutation \(x \mapsto x^{2^i}\).


negabent function Bent function quadratic Boolean function Maiorana-McFarland function permutation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dillon, J.: Elementary Hadamard Difference sets, Ph.D. dissertation, Univ. of Maryland (1974)Google Scholar
  2. 2.
    Dobbertin, H., Leander, G.: A Survey of Some Recent Results on Bent Functions. In: Helleseth, T., Sarwate, D., Song, H.-Y., Yang, K. (eds.) SETA 2004. LNCS, vol. 3486, pp. 1–29. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Helleseth, T., Kholosha, A.: \(x^{2^l+1} + x + a\) and related affine polynomials over GF(2k). Cryptography and Communications 2(1), 85–109 (2010)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Parker, M.G.: Constabent properties of Golay-Davis-Jedwab sequences. In: Int. Symp. Information Theory, p. 302. IEEE, Sorrento (2000)Google Scholar
  5. 5.
    Parker, M.G., Pott, A.: On Boolean Functions Which are Bent and Negabent. In: Golomb, S.W., Gong, G., Helleseth, T., Song, H.-Y. (eds.) SSC 2007. LNCS, vol. 4893, pp. 9–23. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Riera, C., Parker, M.G.: One and Two-Variable Interlace Polynomials: A Spectral Interpretation. In: Ytrehus, Ø. (ed.) WCC 2005. LNCS, vol. 3969, pp. 397–411. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Rothaus, O.S.: On bent functions. Journal of Combinatorial Theory Series A 20, 300–305 (1976)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Sarkar, S.: On the Symmetric Negabent Boolean Functions. In: Roy, B., Sendrier, N. (eds.) INDOCRYPT 2009. LNCS, vol. 5922, pp. 136–143. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Schmidt, K.-U., Parker, M.G., Pott, A.: Negabent Functions in the Maiorana–McFarland Class. In: Golomb, S.W., Parker, M.G., Pott, A., Winterhof, A. (eds.) SETA 2008. LNCS, vol. 5203, pp. 390–402. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Stănică, P., Gangopadhyay, S., Chaturvedi, A., Gangopadhyay, A.K., Maitra, S.: Nega–Hadamard Transform, Bent and Negabent Functions. In: Carlet, C., Pott, A. (eds.) SETA 2010. LNCS, vol. 6338, pp. 359–372. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sumanta Sarkar
    • 1
  1. 1.Department of Computer ScienceUniversity of CalgaryCanada

Personalised recommendations