Variable Weight Sequences for Adaptive Scheduled Access in MANETs

  • Jonathan Lutz
  • Charles J. Colbourn
  • Violet R. Syrotiuk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7280)


Scheduling access to a shared channel in mobile ad hoc networks must address numerous competing requirements, for example on throughput, delay, and fairness. It must address disparate and dynamic traffic demands as well as losses due to collisions with neighbouring transmitters. It must address changes in the topology of the network that arise from mobility. Topology transparent scheduling schemes have been proposed as a means to support reasonable delay guarantees, minimum throughput guarantees, and to a lesser extent fairness concerns. Sequences based on codes and combinatorial designs have been explored that support topology transparent scheduling for mobile ad hoc networks. However, all of the schemes proposed provide every node with the same (or essentially the same) channel access, by assigning each node a transmission frame in which the number of transmission slots (‘weight’) is the same. In order to mitigate effects of losses due to collision, it is important to limit the set of frame schedules that are permitted; but at the same time, using frames with differing weights can improve throughput without sacrificing fairness. Combinatorial requirements for variable weight frame schedules are determined based on these observations.


medium access control topology-transparent scheduling variable weight sequences adaptation mobile ad hoc networks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Awduche, D.O., Ganz, A.: MAC protocol for wireless networks in tactical environments. In: Proc. Military Communications Conference 1996 (MILCOM 1996), pp. 923–927 (1996)Google Scholar
  2. 2.
    Chlamtac, I., Faragó, A.: Making transmission schedules immune to topology changes in multi-hop packet radio networks. IEEE/ACM Transactions on Networking 2(1), 23–29 (1994)CrossRefGoogle Scholar
  3. 3.
    Chu, W., Colbourn, C.J., Syrotiuk, V.R.: The effects of synchronization on topology-transparent scheduling. Wireless Networks 12(6), 681–690 (2006)CrossRefGoogle Scholar
  4. 4.
    Chu, W., Colbourn, C.J., Syrotiuk, V.R.: Slot synchronized topology-transparent scheduling for sensor networks. Computer Communications 29(4), 421–428 (2006)CrossRefGoogle Scholar
  5. 5.
    Chung, F.R.K., Salehi, J.A., Wei, V.K.: Optical orthogonal codes: design, analysis and applications. IEEE Transactions on Information Theory 35(3), 595–604 (1989)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Colbourn, C.J., Ling, A.C.H., Syrotiuk, V.R.: Cover-free families and topology-transparent scheduling for MANETs. Designs, Codes, and Cryptography 32(1-3), 35–65 (2004)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Colbourn, C.J., Syrotiuk, V.R.: Scheduled persistence for medium access control in sensor networks. In: Proc. First IEEE International Conference on Mobile Ad-hoc and Sensor Systems (MASS 2004), pp. 264–273 (2004)Google Scholar
  8. 8.
    Colbourn, C.J., Syrotiuk, V.R., Ling, A.C.H.: Steiner Systems for Topology-Transparent Access Control in MANETs. In: Pierre, S., Barbeau, M., An, H.-C. (eds.) ADHOC-NOW 2003. LNCS, vol. 2865, pp. 247–258. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Du, D.-Z., Hwang, F.K.: Combinatorial Group Testing and Its Applications, 2nd edn. Series on Applied Mathematics, vol. 12. World Scientific (2000)Google Scholar
  10. 10.
    D’yachkov, A., Rykov, V., Rashad, A.M.: Superimposed distance codes. Problems Control and Information Theory 18, 237–250 (1989)MathSciNetGoogle Scholar
  11. 11.
    Füredi, Z., Ruszinkó, M.: Superimposed codes are almost big distance ones. In: Proc. IEEE Int. Symp. Inform. Theory (ISIT), p. 118 (1997)Google Scholar
  12. 12.
    Jiang, J., Wu, D., Fan, P.: General constructions of optimal variable-weight optical orthogonal codes. IEEE Trans. Inform. Theory 57(7), 4488–4496 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Ju, J.-H., Li, V.O.K.: An optimal topology-transparent scheduling method in multihop packet radio networks. IEEE/ACM Transactions on Networking 6(3), 298–306 (1998)CrossRefGoogle Scholar
  14. 14.
    Ju, J.-H., Li, V.O.K.: TDMA scheduling design of multihop packet radio networks based on latin squares. IEEE Journal on Selected Areas in Communications 17(8), 1345–1352 (1999)CrossRefGoogle Scholar
  15. 15.
    Lutz, J., Colbourn, C.J., Syrotiuk, V.R.: Apples and oranges: Comparing schedule- and contention-based medium access control. In: Proceedings of the 13th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM 2010), Bodrum, Turkey, pp. 319–326 (October 2010)Google Scholar
  16. 16.
    Lutz, J., Colbourn, C.J., Syrotiuk, V.R.: Topological persistences for medium access control (submitted, 2012)Google Scholar
  17. 17.
    Pióro, M., Medhi, D.: Routing, Flow, and Capacity Design in Communication and Computer Networks. Elsevier Inc. (2004)Google Scholar
  18. 18.
    Rentel, C.H., Kunz, T.: Reed-Solomon and Hermitian Code-Based Scheduling Protocols for Wireless Ad Hoc Networks. In: Syrotiuk, V.R., Chávez, E. (eds.) ADHOC-NOW 2005. LNCS, vol. 3738, pp. 221–234. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Syrotiuk, V.R., Colbourn, C.J., Ling, A.C.H.: Topology-transparent scheduling in MANETs using orthogonal arrays. In: Proceedings of the DIAL-M/POMC Joint Workshop on Foundations of Mobile Computing, pp. 43–49. ACM, San Diego (2003)CrossRefGoogle Scholar
  20. 20.
    Syrotiuk, V.R., Colbourn, C.J., Yellamraju, S.: Rateless forward error correction for topology-transparent scheduling. IEEE/ACM Transactions on Networking 16(2), 464–472 (2008)CrossRefGoogle Scholar
  21. 21.
    Wu, D., Cao, J., Fan, P.: New Optimal Variable-Weight Optical Orthogonal Codes. In: Carlet, C., Pott, A. (eds.) SETA 2010. LNCS, vol. 6338, pp. 102–112. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  22. 22.
    Xu, C.: An algorithm for improving throughput guarantee of topology-transparent MAC scheduling strategy. Wireless Sensor Network 2, 801–806 (2010)CrossRefGoogle Scholar
  23. 23.
    Yang, G.-C.: Variable-weight optical orthogonal codes for CDMA networks with multiple performance requirements. IEEE Trans. Commun. 44, 47–55 (1996)MATHCrossRefGoogle Scholar
  24. 24.
    Zhao, H., Wu, D., Fan, P.: Constructions of optimal variable-weight optical orthogonal codes. Journal of Combinatorial Designs 18, 274–291 (2010)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Zheng, R., Hou, C.-J., Sha, L.: Asynchronous wakeup for ad hoc networks. In: Proceedings of the International Conference on Mobile Ad Hoc Networking and Computing (Mobihoc 2003), pp. 35–45 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jonathan Lutz
    • 1
  • Charles J. Colbourn
    • 1
  • Violet R. Syrotiuk
    • 1
  1. 1.School of Computing, Informatics, and Decision Systems EngineeringArizona State UniversityTempeUSA

Personalised recommendations