Low-Hit-Zone Frequency-Hopping Sequence Sets with New Parameters

  • Jin-Ho Chung
  • Kyeongcheol Yang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7280)


In quasi-synchronous frequency-hopping multiple-access systems, low-hit-zone frequency-hopping sequence (LHZ-FHS) sets are commonly employed to minimize multiple-access interferences. In this paper, we present (near-)optimal LHZ-FHS sets with new parameters. We first analyze the Hamming correlation of frequency-hopping sequences (FHSs) constructed by the Cartesian product. We then present a new optimal LHZ-FHS set with respect to the Peng-Fan-Lee bound, which is obtained from the Cartesian product of two one-coincidence FHS sets. We also construct a near-optimal LHZ-FHS set from Kumar’s FHS set.


Frequency-hopping multiple-access frequency-hopping sequences low-hit-zone sequences quasi-synchronous systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Simon, M.K., Omura, J.K., Scholtz, R.A., Levitt, B.K.: Spread Spectrum Communications Handbook (Revised Ed.). McGraw-Hill Inc. (1994)Google Scholar
  2. 2.
    Sarwate, D.V.: Reed-Solomon codes and the design of sequences for spread-spectrum multiple-access communications. In: Wicker, S.B., Bharagava, V.K. (eds.) Reed-Solomon Codes and Their Applications. IEEE Press, Piscataway (1994)Google Scholar
  3. 3.
    Fan, P., Darnell, M.: Sequence Design for Communications Applications. Research Studies Press (RSP), John Wiley & Sons, London, UK (1996)Google Scholar
  4. 4.
    Lempel, A., Greenberger, H.: Families of sequences with optimal Hamming correlation properties. IEEE Trans. Inform. Theory 20(1), 90–94 (1974)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Kumar, P.V.: Frequency-hopping code sequence designs having large linear span. IEEE Trans. Inform. Theory 34(1), 146–151 (1988)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Udaya, P., Siddiqi, M.U.: Optimal large linear complexity frequency hopping patterns derived from polynomial residue class rings. IEEE Trans. Inform. Theory 44(4), 1492–1503 (1998)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Chu, W., Colbourn, C.J.: Optimal frequency-hopping sequences via cyclotomy. IEEE Trans. Inform. Theory 51(3), 1139–1141 (2005)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Ding, C., Yin, J.: Sets of optimal frequency-hopping sequences. IEEE Trans. Inform. Theory 54(8), 3741–3745 (2008)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Han, Y.K., Yang, K.: On the Sidel’nikov sequences as frequency-hopping sequences. IEEE Trans. Inform. Theory 55(9), 4279–4285 (2009)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Chung, J.-H., Han, Y.K., Yang, K.: New classes of optimal frequency-hopping sequences by interleaving techniques. IEEE Trans. Inform. Theory 55(12), 5783–5791 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Chung, J.-H., Yang, K.: Optimal frequency-hopping sequences with new parameters. IEEE Trans. Inform. Theory 56(4), 1685–1693 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Chung, J.-H., Yang, K.: k-fold cyclotomy and its application to frequency-hopping sequences. IEEE Trans. Inform. Theory 57(4), 2306–2317 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Zhou, Z., Tang, X., Peng, D., Udaya, P.: New constructions for optimal sets of frequency-hopping sequences. IEEE Trans. Inform. Theory 57(6), 3831–3840 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Ye, W., Fan, P.: Two classes of frequency hopping sequences with no-hit zone. In: Proc. 7th Intl. Symp. Commun. Theory Appl., Ambleside, UK, pp. 304–306 (2003)Google Scholar
  15. 15.
    Wang, X., Fan, P.: A class of frequency hopping sequences with no hit zone. In: Proc. 4th Intl. Conf. Par. Dist. Comp., Appl. Tech., Chengdu, China, pp. 896–898 (2003)Google Scholar
  16. 16.
    Ye, W., Fan, P., Gabidulin, E.M.: Construction of non-repeating frequency-hopping sequences with no-hit zone. Electronics Letters 42(8), 681–682 (2006)CrossRefGoogle Scholar
  17. 17.
    Chung, J.-H., Han, Y.K., Yang, K.: No-hit-zone frequency-hopping sequence sets with optimal Hamming autocorrelation. IEICE Trans. Fund. Elec. Commun. Comp. Sci. 93-A(11), 2239–2244 (2010)CrossRefGoogle Scholar
  18. 18.
    Peng, D., Fan, P., Lee, M.H.: Lower bounds on the periodic Hamming correlations of frequency hopping sequences with low hit zone. Sci. China Ser. F Inform. Sci. 49(2), 208–218 (2006)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Ma, W., Sun, S.: New designs of frequency hopping sequences with low hit zone. Des. Codes Crypt. 60(2), 145–153 (2011)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Niu, X., Peng, D., Zhou, Z.: New classes of optimal frequency hopping sequences with low hit zone with new parameters. In: The Fifth International Workshop on Signal Design and its Applications in Communications (IWSDA 2011), Guilin, China, October 10-14, pp. 111–114 (2011)Google Scholar
  21. 21.
    Gong, G.: Theory and applications of q-ary interleaved sequences. IEEE Trans. Inform. Theory 41(2), 400–411 (1995)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Solomon, G.: Optimal frequency hopping for multiple access. In: Proc. 1977 Symp. Spread Spectrum Commun., San Diego, CA, USA, March 13-16, pp. 33–35 (1977)Google Scholar
  23. 23.
    Peng, D., Fan, P.: Lower bounds on the Hamming auto- and cross correlations of frequency-hopping sequences. IEEE Trans. Inform. Theory 50(9), 2149–2154 (2004)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Reed, I.S., Solomon, G.: Polynomial cods over certain finite fields. SIAM J. App. Math. 6, 300–304 (1960)MathSciNetGoogle Scholar
  25. 25.
    Kumar, P.V., Scholtz, R.A., Welch, L.R.: Generalized bent functions and their properties. J. Comb. Theory Ser. A 40, 90–107 (1985)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jin-Ho Chung
    • 1
  • Kyeongcheol Yang
    • 1
  1. 1.Dept. of Electrical EngineeringPohang University of Science and Technology (POSTECH)PohangKorea

Personalised recommendations