Irreducible Coefficient Relations

  • Thomas J. Dorsey
  • Alfred W. Hales
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7280)


The distribution of coefficients of irreducible polynomials over GF(2) has long been a subject of interest for coding theorists and researchers in related fields. In this paper, we prove that the only affine relations holding on these coefficients are essentially trivial. We also give an extension of this result to arbitrary finite fields GF(q), where “affine” is replaced by “degree at most q-1”.


Finite Field Prime Power Irreducible Polynomial Elementary Symmetric Function Binary Expansion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Artin, E.: Quadratische Körper im Gebiete der Höheren Kongruenzen II. Math. Z 19(1), 207–246 (1924)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Cohen, S.D.: Explicit theorems on generator polynomials. Finite Fields Appl. 11(3), 337–357 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Golomb, S.W., et al.: Shift Register Sequences. Holden-Day, Inc., San Francisco (1967), 2nd edn. Aegean Park Press (1982)Google Scholar
  4. 4.
    Hayes, D.R.: The distribution of irreducibles in GF[q x]. Trans. Amer. Math. Soc. 117, 101–127 (1965)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Lidl, R., Niederreiter, H.: Finite fields, 2nd edn. Encyclopedia of Mathematics and its Applications, vol. 20. Cambridge University Press, Cambridge (1997); With a foreword by P. M. CohnGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Thomas J. Dorsey
    • 1
  • Alfred W. Hales
    • 1
  1. 1.Center for Communications ResearchSan DiegoUSA

Personalised recommendations