Skip to main content

Understanding Evolving Bacterial Colonies

  • Chapter
Springer Handbook of Bio-/Neuroinformatics

Part of the book series: Springer Handbooks ((SHB))

  • 7308 Accesses

Abstract

Microbial colonies are collections of cells of the same organism (in contrast to biofilms, which comprise multiple species). Within an evolving colony, cells communicate, pass information to their daughters, and assume roles that depend on their spatiotemporal distribution. Thus, they possess a collective intelligence which renders them model systems for studying biocomplexity. Since the early 1990s, a plethora of models have been proposed to investigate and understand bacterial colonies. The majority of these are based on continuum equations incorporating physical and biological phenomena, such as chemotaxis, bacterial diffusion, nutrient diffusion and consumption, and cellular reproduction. Continuum approaches have greatly advanced our knowledge of the likely drivers of colony evolution, but are limited by the fact that diverse methods yield the same or similar solutions. Some researchers have turned instead to agent-based, heuristic approaches, which provide a natural description of complex systems. Yet others have recognized that chemotaxis constitutes an optimization problem, as bacteria weigh nutrient requirement against competition and energy expenditure. This chapter begins with a brief introduction to bacterial colonies and why they have attracted research interest. The experiments on which many of the published models have been based, and the modeling approaches used, are discussed (Sect. 7.1). In Sect. 7.2 a wide cross-section of published models for comparison and contrast is presented. Limitations of existing models are discussed in Sects. 7.37.7, and the chapter concludes with current and future trends in this important research area (Sect. 7.8).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-D:

two-dimensional

BCGA:

bacterial colony growth algorithm

BFA:

bacterial foraging algorithm

DBM:

low nutrient/soft agar conditions

DC:

direct current

DLA:

low nutrient/hard agar conditions

DNA:

deoxyribonucleic acid

KBP:

knotted branching pattern

UV:

ultraviolet

References

  1. P. Hirsch: Microcolony formation and consortia. In: Microbial Adhesion and Aggregation, ed. by K.C. Marshall (Springer, Berlin, Heidelberg 1984) pp. 373–393

    Chapter  Google Scholar 

  2. C. Friend-Norton: Microbiology (Addison-Wesley, Boston 1981)

    Google Scholar 

  3. M.H. Saier Jr: Bacterial diversity and the evolution of differentiation, Austr. Soc. Microbiol. News 66(6), 337–343 (2000)

    Google Scholar 

  4. J. Casadesús, D. Low: Epigenetic gene regulation in the bacterial world, Microbiol. Mol. Biol. Rev. 70(3), 830–856 (2006)

    Article  Google Scholar 

  5. R.F. Xavier, N. Omar, L. Nunes de Castro: Bacterial colony: Information processing and computational behavior, 3rd World Congr. Nat. Biol. Inspired Comput. (2011) pp. 439–443

    Google Scholar 

  6. M. Abellana, J. Benedí, V. Sanchis, A.J. Ramos: Water activity and temperature effects on germination and growth of Eurotium amstelodami, E. chevalieri and E. herbariorum isolates from bakery products, J. Appl. Microbiol. 87, 371–380 (1999)

    Article  Google Scholar 

  7. L.V. Thomas, J.W.T. Wimpenny, G.C. Barker: Spatial interactions between subsurface bacterial colonies in a model system: A territory model describing the inhibition of Listeria monocytogenes by a nisin-producing lactic acid bacterium, Microbiology 143, 2575–2582 (1997)

    Article  Google Scholar 

  8. E.I. Newman, H.J. Bowen: Patterns of distribution of bacteria on root surfaces, Soil Biol. Biochem. 6, 205–209 (1974)

    Article  Google Scholar 

  9. S.J. Pirt: A kinetic study of the mode of growth of surface colonies of bacteria and fungi, J. Gen. Microbiol. 47, 181–197 (1967)

    Article  Google Scholar 

  10. J.W.T. Wimpenny: The growth and form of bacterial colonies, J. Gen. Microbiol. 114, 483–486 (1979)

    Article  Google Scholar 

  11. R.S. Kamath, H.R. Bungay: Growth of yeast colonies on solid media, J. Gen. Microbiol. 134, 3061–3069 (1988)

    Google Scholar 

  12. I. Golding, Y. Kozlovsky, I. Cohen, E. Ben-Jacob: Studies of bacterial branching growth using reaction-diffusion models for colonial development, Physica A 260, 510–554 (1998)

    Article  Google Scholar 

  13. M. Ohgiwari, M. Matsushita, T. Matsuyama: Morphological changes in growth phenomena of bacterial colony patterns, J. Phys. Soc. Japan 61(3), 816–822 (1992)

    Article  Google Scholar 

  14. J. Wakita, K. Komatsu, A. Nakahara, T. Matsuyama, M. Matsushita: Experimental investigation on the validity of population dynamics approach to bacterial colony formation, J. Phys. Soc. Japan 63(3), 1205–1211 (1994)

    Article  Google Scholar 

  15. E. Ben-Jacob, I. Cohen, O. Shochet, I. Aranson, H. Levine, L. Tsimring: Complex bacterial patterns, Nature 373, 566–567 (1995)

    Article  Google Scholar 

  16. E. Ben-Jacob, I. Cohen, I. Golding, Y. Kozlovsky: Modeling branching and chiral patterning of lubricating bacteria, Proc. IMA Workshop Pattern Form. Morphogenet. (1998) (1999) pp. 1–50

    Google Scholar 

  17. R.A. Hegstrom, D.K. Kondepudi: The handedness of the universe, Sci. Amer. Jan, 108–115 (1990)

    Article  Google Scholar 

  18. E. Ben-Jacob, O. Shochet, A. Tenenbaum, I. Cohen: Communication, regulation and control during complex patterning of bacterial colonies, Fractals 2(1), 15–44 (1994)

    Article  Google Scholar 

  19. J.A. Shapiro: The use of Mudlac transposons as tools for vital staining to visualise clonal and non-clonal patterns of organisation in bacterial growth on agar surfaces, J. Gen. Microbiol. 130, 1169–1181 (1984)

    Google Scholar 

  20. H. Fujikawa, M. Matsushita: Fractal growth of Bacillus subtilis on agar, J. Phys. Soc. Japan 58(11), 3875–3878 (1989)

    Article  Google Scholar 

  21. L.Z. Pipe: unpublished observations

    Google Scholar 

  22. R. Bar-Ness, N. Avrahamy, T. Matsuyama, M. Rosenberg: Increased cell surface hydrophobicity of a Serratia marcescens NS 38 mutant lacking wetting activity, J. Bacteriol. 179(9), 4361–4364 (1988)

    Google Scholar 

  23. N.H. Mendelson, A. Bourque, K. Wilkening, K.R. Anderson, J.C. Watkins: Organized cell swimming motions in Bacillus subtilis colonies: Patterns of short-lived whirls and jets, J. Bacteriol. 181(2), 600–609 (1999)

    Google Scholar 

  24. E.O. Budrene, H.C. Berg: Complex patterns formed by motile cells of Escherichia coli, Nature 349, 630–633 (1991)

    Article  Google Scholar 

  25. E.O. Budrene, H.C. Berg: Dynamics of formation of symmetrical patterns by chemotactic bacteria, Nature 376, 49–53 (1995)

    Article  Google Scholar 

  26. M.P. Brenner, L.S. Levitov, E.O. Budrene: Physical mechanisms for chemotactic pattern formation by bacteria, Biophys. J. 74(4), 1677–1693 (1998)

    Article  Google Scholar 

  27. Y. Blat, M. Eisenbach: Tar-dependent and-independent pattern formation by Salmonella typhimurium, J. Bacteriol. 177, 1683–1691 (1995)

    Google Scholar 

  28. D.E. Woodward, R. Tyson, M.R. Myerscough, J.D. Murray, E.O. Budrene, H.C. Berg: Spatio-temporal patterns generated by Salmonella typhimurium, Biophys. J. 66, 2181–2189 (1995)

    Article  Google Scholar 

  29. O. Rauprich, M. Matsushita, C.J. Weijer, F. Siegert, S.E. Esipov, J.A. Shapiro: Periodic phenomena in Proteus mirabilis swarm colony development, J. Bacteriol. 178(22), 6525–6538 (1996)

    Google Scholar 

  30. L.M. Prescott, J.P. Harley, D.A. Klein: Microbiology, 3rd edn. (McGraw-Hill, Columbus 1996)

    Google Scholar 

  31. L.J. Shimkets: Social and developmental biology of the myxobacteria, Microbiol. Rev. 54(4), 473–501 (1990)

    Google Scholar 

  32. R.E. Keen, J.D. Spain: Computer Simulation in Biology – A BASIC Introduction (Wiley-Liss, New York 1992)

    Google Scholar 

  33. J. Baranyi: Comparison of stochastic and deterministic concepts of bacterial lag, J. Theor. Biol. 192, 403–408 (1998)

    Article  Google Scholar 

  34. E. Bonabeau: Agent-based modeling: Methods and techniques for simulating human systems, Proc. Natl. Acad. Sci. USA 99(Suppl. 3), 7280–7287 (2002)

    Article  Google Scholar 

  35. C.M. Macal, M.J. North: Tutorial on agent-based modeling and simulation Part 2: How to model with agents, Proc. Winter Simul. Conf. 2006 (2006) pp. 73–83

    Google Scholar 

  36. J. Kreft, G. Booth, J.W.T. Wimpenny: BacSim, a simulator for individual-based modeling of bacterial colony growth, Microbiology 144, 3275–3287 (1998)

    Article  Google Scholar 

  37. E. Katzav, L.F. Cugliandolo: From coupled map lattices to the stochastic Kardar-Parisi-Zhang equation, Physica A 371(1), 96–99 (2006)

    Article  Google Scholar 

  38. C. Ormerod, N.S. Bordes, B.A. Pailthorpe: Characterising coupled map lattices (2006), available online at www.ms.unimelb.edu.au/∼cormerod/pailthorpe.pdf

  39. H. Sakaguchi, M. Ohtaki: A coupled map lattice for dendritic patterns, Physica A 272, 300–313 (1999)

    Article  MathSciNet  Google Scholar 

  40. N. Ganguly, B.K. Sikdar, A. Deutsch, G. Canright, C. Pal Chaudhuri: A survey on cellular automata, Technical Report (Centre for High Performance Computing, Dresden University of Technology, Dresden 2003), available online at www.cs.unibo.it/bison/publications/CAsurvey.pdf

    Google Scholar 

  41. G. Cattaneo, P. Flocchini, G. Mauri, C. Quaranta Vogliotti, N. Santoro: Cellular automata in fuzzy backgrounds, Physica D 105, 105–120 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  42. E. Bettelheim, B. Lehmann: Microscopic simulation of reaction-diffusion processes and applications to population biology and product marketing, Annu. Rev. Comput. Phys. 7, 311–339 (1999)

    Google Scholar 

  43. M. Badoual, P. Derbez, M. Aubert, B. Grammaticos: Simulating the migration and growth patterns of Bacillus subtilis, Physica A 338, 549–559 (2009)

    Article  Google Scholar 

  44. M. Matsushita, J. Wakita, H. Itoh, I. Ráfols, T. Matsuyama, H. Sakaguchi, M. Mimura: Interface growth and pattern formation in bacterial colonies, Physica A 249, 517–524 (1998)

    Article  Google Scholar 

  45. M. Mimura, H. Sakaguchi, M. Matsushita: Reaction-diffusion modeling of bacterial colony patterns, Physica A 282, 283–303 (2000)

    Article  Google Scholar 

  46. E. Ben-Jacob, I. Cohen, D.L. Gutnick: Cooperative organisation of bacterial colonies: From genotype to morphotype, Annu. Rev. Microbiol. 52, 779–806 (1998)

    Article  Google Scholar 

  47. M.-P. Zorzano, D. Hochberg, M.-T. Cuevas, J.-M. Gómez-Gómez: Reaction-diffusion model for pattern formation in E. coli swarming colonies with slime, Phys. Rev. E 71, 031908 (2005)

    Article  Google Scholar 

  48. T. Sams, K. Sneppen, M.H. Jensen, C. Ellegaard, B.E. Christensen, U. Thrane: Morphological instabilities in a growing yeast colony: Experiment and theory, Phys. Rev. Lett. 79(2), 313–316 (1997)

    Article  Google Scholar 

  49. B. Li, J. Wang, B. Wang, W. Liu, Z. Wu: Computer simulations of bacterial-colony formation, Europhys. Lett. 30(4), 239–243 (1995)

    Article  Google Scholar 

  50. M.Y.A. Azbel: Survival-extinction transition in bacteria growth, Europhys. Lett. 22(4), 311–316 (1993)

    Article  Google Scholar 

  51. J. Lega, T. Passot: Hydrodynamics of bacterial colonies: A model, Phys. Rev. E 67, 031906 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  52. K. Kawasaki, A. Mochizuku, M. Matsushita, T. Umeda, N. Shigesada: Modeling spatio-temporal patterns generated by Bacillus subtilis, J. Theor. Biol. 188, 177–185 (1997)

    Article  Google Scholar 

  53. S. Kitsunezaki: Interface dynamics for bacterial colony formation, J. Physical Soc. Japan 66(5), 1544–1550 (1997)

    Article  MATH  Google Scholar 

  54. T.A. Witten, L.M. Sander: Diffusion-limited aggregation, Phys. Rev. B 27(9), 5686–5697 (1983)

    Article  MathSciNet  Google Scholar 

  55. L. Niemeyer, L. Pietronero, H.J. Wiesmann: Fractal dimension of dielectric breakdown, Phys. Rev. Lett. 52, 1033–1036 (1984)

    Article  MathSciNet  Google Scholar 

  56. E. Brener, H. Levene, Y. Tu: Mean-field theory for diffusion-limited aggregation in low dimensions, Phys. Rev. Lett. 66(15), 1978–1981 (1991)

    Article  Google Scholar 

  57. M. Uwaha, Y. Saito: Aggregation growth in a gas of finite density: Velocity selection via fractal dimension of diffusion-limited aggregation, Phys. Rev. A 40(8), 4716–4723 (1989)

    Article  Google Scholar 

  58. Y. Tu, H. Levine, D. Ridgway: Morphology transitions in a mean-field model of diffusion-limited growth, Phys. Rev. Lett. 71(23), 3838–3841 (1993)

    Article  Google Scholar 

  59. P. Jensen, A.-L. Barabási, H. Larralde, S. Havlin, H.E. Stanley: Model incorporating deposition, diffusion, and aggregation in submonolayer nanostructures, Phys. Rev. E 50(1), 618–621 (1994)

    Article  Google Scholar 

  60. A. Czirók, M. Matsushita, T. Vicsek: Theory of periodic swarming of bacteria: Application to Proteus mirabilis, Phys. Rev. E 63, 031915–1–031915–11 (2001)

    Article  Google Scholar 

  61. H. Itoh, J. Wakita, K. Watanabe, T. Matsuyama, M. Matsushita: Periodic colony formation of bacteria due to their cell reproduction and movement, Prog. Theor. Phys. 139, 139–151 (2000)

    Article  Google Scholar 

  62. S.E. Esipov, J.A. Shapiro: Kinetic model of Proteus mirabilis swarm colony development, J. Math. Biol. 36, 249–268 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  63. S. Arouh: Analytic model for ring pattern formation by bacterial swarmers, Phys. Rev. E 63, 031908 (2001)

    Article  Google Scholar 

  64. A.M. Lacasta, I.R. Cantalapiedra, C.E. Auguet, A. Peñaranda, L. Ramírez-Piscina: Modeling of spatio-temporal patterns in bacterial colonies, Phys. Rev. E 59(6), 7036–7041 (1999)

    Article  Google Scholar 

  65. J. Wakita, H. Shimada, H. Itoh, T. Matsuyama, M. Matsushita: Periodic colony formation by bacterial species Bacillus subtilis, J. Phys. Soc. Japan 70(3), 911–919 (2001)

    Article  Google Scholar 

  66. A. Nishiyama, T. Tokihiro, M. Badoual, B. Grammaticos: Modeling the morphology of migrating bacterial colonies, Physica D 239, 1573–1580 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  67. J. Østergård, L. Sørensen: Modeling bacterial colony growth with cellular automata (2006), available online at ftp://ftp.diku.dk/diku/image/publications/ostergaard.sorensen.060925.pdf

  68. L. Tsimring, H. Levine, I. Aranson, E. Ben-Jacob, I. Cohen, O. Shochet, W.N. Reynolds: Aggregation patterns in stressed bacteria, Phys. Rev. Lett. 75(9), 1859–1862 (1995)

    Article  Google Scholar 

  69. D.R. Nelson, N.M. Schnerb: Non-hermitian localisation and population biology, Phys. Rev. E 58(2), 1383–1403 (1998)

    Article  MathSciNet  Google Scholar 

  70. S. Zhang, L. Zhang, R. Liang, E. Zhang, Y. Liu, S. Zhao: Lubricating bacteria model for the growth of bacterial colonies exposed to ultraviolet radiation, Phys. Rev. E 72, 051913 (2005)

    Article  Google Scholar 

  71. A.M. Delprato, A. Samadani, A. Kudrolli, L.S. Tsimring: Swarming ring patterns in bacterial colonies exposed to ultraviolet radiation, Phys. Rev. Lett. 87(15), 158102–1–158102–4 (2001)

    Article  Google Scholar 

  72. E. Ben-Jacob: Learning from bacteria about natural information processing, Nat. Genet. Eng. Nat. Genome Ed. Ann. Acad. Sci. N. Y. 1178, 78–90 (2009)

    Article  Google Scholar 

  73. J.Y. Wakano, S. Maenosono, A. Komoto, N. Eiha, Y. Yamaguchi: Self-organised pattern formation of a bacteria colony modeled by a reaction-diffusion system and nucleation theory, Phys. Rev. E 90, 258102 (2003)

    Google Scholar 

  74. N. Eiha, A. Komoto, S. Maenosono, J.Y. Wakano, K. Yamamoto, Y. Yamaguchi: The mode transition of the bacterial colony, Physica A 313, 609–624 (2002)

    Article  Google Scholar 

  75. J. Reyrolle, F. Letellier: Autoradiographic study of the localization and evolution of growth zones in bacterial colonies, J. Gen. Microbiol. 111, 399–406 (1979)

    Article  Google Scholar 

  76. R.A. Fisher: The wave of advance of advantageous genes, Ann. Eugen. 7, 353–369 (1937)

    MATH  Google Scholar 

  77. L.Z. Pipe: The influence of temperature on the form and development of bacterial colonies, N. Z. Microbiol. 6(2), 28–32 (2000)

    Google Scholar 

  78. N.S. Panikov, S.E. Belova, A.G. Dorofeev: Nonlinearity in the growth of bacterial colonies: Conditions and causes, Microbiology 71(1), 50–56 (2002)

    Article  Google Scholar 

  79. J. Müller, W. van Sarloos: Morphological instability and dynamics of fronts in bacterial growth models with nonlinear diffusion, Phys. Rev. E 65, 061111 (2002)

    Article  Google Scholar 

  80. H. Chen, Y. Zhu, K. Hu: Cooperative bacterial foraging optimization, Discrete Dynam. Nat. Soc. 2009, 815247 (2009)

    MathSciNet  MATH  Google Scholar 

  81. Y. Shi, T. Duke: Cooperative model of bacterial sensing, Phys. Rev. E 58(5), 6399–6406 (1998)

    Article  Google Scholar 

  82. Y. Liu, M. Passino: Biomimicry of social foraging bacteria for distributed optimization: Models, principles, and emergent behaviors, J. Optim. Theory Appl. 115(3), 603–628 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  83. B. Bhushan, M. Singh: Adaptive control of DC motor using bacterial foraging algorithm, Appl. Soft Comput. 11, 4913–4920 (2011)

    Article  Google Scholar 

  84. A. Gasparri, M. Prosperi: A bacterial colony growth algorithm for mobile robot localization, Auton. Robots 24, 349–364 (2008)

    Article  Google Scholar 

  85. M.S. Li, T.Y. Ji, W.J. Tang, Q.H. Wu, J.R. Saunders: Bacterial foraging algorithm with varying population, Biosystems 100, 185–197 (2010)

    Article  Google Scholar 

  86. H.P. Zhang, A. Beʼer, E.-L. Florin, H.L. Swinney: Collective motion and density fluctuations in bacterial colonies, Proc. Natl. Acad. Sci. USA 107(31), 13626–13630 (2010)

    Article  Google Scholar 

  87. B. Kerr, M.A. Riley, M.W. Feldman, B.J. Bohannan: Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors, Nature 418, 171–174 (2002)

    Article  Google Scholar 

  88. V. Grimm, S.F. Railsback: Agent-based models in ecology: Patterns and alternative theories of adaptive behavior,. In: Agent-Based Computational Modeling, ed. by F.C. Billari, T. Fent, A. Prskawetz, J. Scheffran (Physica, Heidelberg 2006) pp. 139–152, (2006)

    Chapter  Google Scholar 

  89. H. Levine, E. Ben-Jacob, I. Cohen, W.-J. Rappel: Swarming patterns in microorganisms: Some new modeling results, Proc. 45th IEEE Conf. Decis. Control (2006) pp. 5073–5077

    Google Scholar 

  90. D. Schultz, P.G. Wolynes, E. Ben-Jacob, J.N. Onuchic: Deciding fate in adverse times: Sporulation and competence in Bacillus subtilis, Proc. Natl. Acad. Sci. USA 106(50), 21027–21034 (2009)

    Article  Google Scholar 

  91. A. Shklarsh, O. Kalishman, C.J. Ingham, E. Ben-Jacob: Bacteria self-organization and swarming intelligence, Lecture Presented at the 8th Agents Multi-agent Syst., AAMAS (2008)

    Google Scholar 

  92. J.A. Shapiro: Organisation of developing Escherichia coli colonies viewed by scanning electron microscopy, J. Bacteriol. 169(1), 142–156 (1987)

    Google Scholar 

  93. J.J. Lopez-Rubio, A.M. Gontijo, M.C. Nunes, N. Issar, R.H. Rivas, A. Scherf: 5ʼ flanking region of var genes nucleate histone modification patterns linked to phenotypic inheritance of virulence traits in malaria parasites, Mol. Microbiol. 66(6), 1296–1305 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonie Z. Pipe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag

About this chapter

Cite this chapter

Pipe, L.Z. (2014). Understanding Evolving Bacterial Colonies. In: Kasabov, N. (eds) Springer Handbook of Bio-/Neuroinformatics. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30574-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30574-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30573-3

  • Online ISBN: 978-3-642-30574-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics