Skip to main content

Pattern Formation and Animal Morphogenesis

  • Chapter
Springer Handbook of Bio-/Neuroinformatics

Part of the book series: Springer Handbooks ((SHB))

Abstract

The millions of species of animals on Earth can be divided into only about 35 phyla based on underlying morphology. Animal bodies are constructed using a small set of structural motifs that, as 19th century embryologists recognized, can be generated spontaneously by nonliving physicochemical processes. The discovery of genes early in the 20th century, and of their molecular identity a few decades later, led to the view that morphology is a consequence of patterned gene expression during development. Advances in mathematical theory and numerical methods in the second half of the 20th century have made it possible to analyze, classify, and simulate patterns that emerge spontaneously in nonlinear dynamical systems.

The body of this chapter is in three sections. The first section (Sect. 6.1) introduces mathematical models and methods of dynamical systems theory. Section 6.2 explains principles and mechanisms of dynamical pattern formation using this theory, while Sect. 6.3 discusses the possible role of these mechanisms in the evolution and development of animal morphology. The mathematical notation is loose and the presentation avoids technicalities, in order to make the chapter more accessible to its intended audience: biologists who have not yet mastered nonlinear dynamical systems theory, and mathematical engineers and physicists seeking opportunities to apply their skills in biology.

The theory shows that macromolecular reaction networks are capable in principle of generating a larger class of patterns than actually occurs. This raises an interesting puzzle: Why do developmental genes only build structures that could build themselves? The question lies at the heart of evo-devo, an emerging scientific program that aims to synthesize evolutionary molecular biology and developmental mechanics. Dynamical models suggest that metazoan developmental genes may have evolved not as generators of morphology, but to stabilize and coordinate self-organizing mechanical and physicochemical processes. Simple simulations show how molecular patterns that now presage anatomical patterns in development may have been a consequence rather than a cause of those patterns in early animal evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CAM:

cell adhesion molecule

DNA:

deoxyribonucleic acid

ODE:

ordinary differential equation

PDE:

partial differential equation

SAM:

surface adhesion molecule

References

  1. D.A.W. Thompson: On Growth and Form (Cambridge Univ. Press, Cambridge 1917) p. 793

    Google Scholar 

  2. R.D.A. Thompson: DʼArcy Wentworth Thompson, The Scholar-Naturalist, 1860-1948 (Oxford Univ. Pres, London 1958) p. 244

    Google Scholar 

  3. T.H. Morgan: The Mechanism of Mendelian Heredity (Holt, New York 1915) p. 262

    Book  Google Scholar 

  4. J.D. Watson, F.H.C. Crick: Molecular structure of nucleic acids – A structure for deoxyribose nucleic acid, Nature 171(4356), 737–738 (1953)

    Article  Google Scholar 

  5. I.S. Peter, E.H. Davidson: Genomic control of patterning, Int. J. Dev. Biol. 53(5/6), 707–716 (2009)

    Article  Google Scholar 

  6. R. Dawkins: The Selfish Gene, 2nd edn. (Oxford Univ. Press, Oxford 1976)

    Google Scholar 

  7. R. Dawkins: The Blind Watchmaker (Norton, New York 1986)

    Google Scholar 

  8. G. Doblhammer, J.W. Vaupel: Lifespan depends on month of birth, Proc. Natl. Acad. Sci. USA 98(5), 2934–2939 (2001)

    Article  Google Scholar 

  9. J. Verhulst: World cup soccer players tend to be born with sun and moon in adjacent zodiacal signs, Br. J. Sports Med. 34(6), 465–466 (2000)

    Article  Google Scholar 

  10. E. Salib: Astrological birth signs in suicide: Hypothesis or speculation?, Med. Sci. Law 43(2), 111–114 (2003)

    Article  Google Scholar 

  11. P. Castrogiovanni, S. Iapichino, C. Pacchierotti, F. Pieraccini: Season of birth in psychiatry – A review, Neuropsychobiology 37(4), 175–181 (1998)

    Article  Google Scholar 

  12. S.A. Newman, G. Forgacs: Complexity and self-organization in biological development and evolution. In: Complexity in Chemistry, Biology, and Ecology, ed. by D. Bonchev, D.H. Rouvray (Springer, New York 2005) pp. 49–95

    Chapter  Google Scholar 

  13. F.S. Collins, V.A. McKusick: Implications of the human genome project for medical science, Jama-J. Am. Med. Assoc. 285(5), 540–544 (2001)

    Article  Google Scholar 

  14. P. Feyerabend: Against Method (Verso, New York 1988) p. 296

    Google Scholar 

  15. C.B. Moler: Numerical Computing with MATLAB2004 (SIAM, Philadelphia 2008)

    Google Scholar 

  16. R.E. Kalman, P.E. Falb, M.A. Arbib: Topics in Mathematical Systems Theory (McGraw-Hill, New York 1969)

    MATH  Google Scholar 

  17. S.H. Strogatz: Nonlinear Dynamics and Chaos (Perseus, New York 1994)

    Google Scholar 

  18. P. Dearden, M. Akam: Developmental evolution: Axial patterning in insects, Curr. Biol. 9(16), R591–R594 (1999)

    Article  Google Scholar 

  19. U. Wilensky: NetLogo (Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston 1999) http://ccl.northwestern.edu/netlogo/

  20. S.A. Kauffman: The Origins of Order: Self-Organization and Selection in Evolution (Oxford Univ. Press, Oxford 1993)

    Google Scholar 

  21. P. Erdös, A. Rényi: On the evolution of random graphs, Bull. Int. Stat. Inst. 38(4), 343–347 (1960)

    MathSciNet  MATH  Google Scholar 

  22. A.M. Turing: The chemical basis of morphogenesis, Bull. Math. Biol. 52(1-2), 153–197 (1990)

    Article  Google Scholar 

  23. A. Gierer, H. Meinhardt: A theory of biological pattern formation, Kybernetik 12(1), 30–39 (1972)

    Article  MATH  Google Scholar 

  24. A.J. Koch, H. Meinhardt: Biological pattern-formation – From basic mechanisms to complex structures, Rev. Mod. Phys. 66(4), 1481–1507 (1994)

    Article  Google Scholar 

  25. H. Meinhardt: Models of biological pattern-formation in the development of higher organisms, Biophys. J. 47(2), A355–A355 (1985)

    Google Scholar 

  26. H. Meinhardt: Mechanisms of biological pattern-formation, Biol. Inspir. Phys. 263, 279–293 (1991)

    Article  Google Scholar 

  27. H. Meinhardt: Pattern-formation in biology – A comparison of models and experiments, Rep. Prog. Phys. 55(6), 797–849 (1992)

    Article  Google Scholar 

  28. H. Meinhardt: Models of biological pattern formation: From elementary steps to the organization of embryonic axes, Multiscale Model. Dev. Syst. 81, 1–63 (2008)

    Article  Google Scholar 

  29. J.D. Murray: Mathematical Biology, 3rd edn. (Springer, New York 2002)

    MATH  Google Scholar 

  30. A.D. Economou, A. Ohazama, T. Porntaveetus, P.T. Sharpe, S. Kondo, M.A. Basson, A. Gritli-Linde, M.T. Cobourne, J.B.A. Green: Periodic stripe formation by a Turing mechanism operating at growth zones in the mammalian palate, Nat. Genet. 44(3), 348–351 (2012)

    Article  Google Scholar 

  31. S. Kondo, T. Miura: Reaction-diffusion model as a framework for understanding biological pattern formation, Science 329(5999), 1616–1620 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. W. Bateson: Materials for the Study of Variation (MacMillan, London 1894)

    Google Scholar 

  33. J. Cooke, E.C. Zeeman: Clock and wavefront model for control of number of repeated structures during animal morphogenesis, J. Theor. Biol. 58(2), 455–476 (1976)

    Article  Google Scholar 

  34. O. Pourquie: The segmentation clock: Converting embryonic time into spatial pattern, Science 301(5631), 328–330 (2003)

    Article  Google Scholar 

  35. O. Pourquie: Segmental patterning of the vertebrate axis, Mech. Dev. 122, S3–S3 (2005)

    Article  Google Scholar 

  36. G.M. Edelman: Topobiology: An Introduction to Molecular Embryology (Basic Books, New York 1988) p. 240

    Google Scholar 

  37. U. Technau, C. Cramer von Laue, F. Rentzsch, S. Luft, B. Hobmayer, H.R. Bode, T.W. Holstein: Parameters of self-organization in Hydra aggregates, Proc. Nat. Acad. Sci. 97(22), 12127–12131 (2000)

    Article  Google Scholar 

  38. D.A.W. Thompson, L.L. Whyte: On Growth and Form (Cambridge Univ. Press, Cambridge 1942) p. 1116

    Google Scholar 

  39. R.F. Allen: The mechanics of splashing, J. Colloid Interface Sci. 124(1), 309–316 (1988)

    Article  Google Scholar 

  40. L.J. Leng: Splash formation by spherical drops, J. Fluid Mech. 427, 73–105 (2001)

    Article  MATH  Google Scholar 

  41. L.V. Zhang, P. Brunet, J. Eggers, R.D. Deegan: Wavelength selection in the crown splash, Phys. Fluids 22(12), 122105–122114 (2010)

    Article  Google Scholar 

  42. S.A. Newman, G. Forgacs, G.B. Müller: Before programs: The physical origination of multicellular forms, Int. J. Dev. Biol. 50(2/3), 289–299 (2006)

    Article  Google Scholar 

  43. C. Nielsen: Six major steps in animal evolution: Are we derived sponge larvae?, Evol. Dev. 10(2), 241–257 (2008)

    Article  Google Scholar 

  44. P.S. Galtsoff: Regeneration after dissociation (An experimental study on sponges) II Histogenesis of Microciona prolifera, J. Exp. Zool 42(1), 223–255 (1925)

    Article  Google Scholar 

  45. G. Korotkov: Comparative morphological study of development of sponges from dissociated cells, Cah. Biol. Mar. 11(3), 325 (1970)

    Google Scholar 

  46. R. Collin, A.S. Mobley, L.B. Lopez, S.P. Leys, M.C. Diaz, R.W. Thacker: Phototactic responses of larvae from the marine sponges Neopetrosia proxima and Xestospongia bocatorensis (Haplosclerida: Petrosiidae), Invertebr. Biol. 129(2), 121–128 (2010)

    Article  Google Scholar 

  47. S. Mariani, M.J. Uriz, X. Turon, T. Alcoverro: Dispersal strategies in sponge larvae: Integrating the life history of larvae and the hydrologic component, Oecologia 149(eq1), 174–184 (2006)

    Article  Google Scholar 

  48. G. Jekely, J. Colombelli, H. Hausen, K. Guy, E. Stelzer, F. Nédélec, D. Arendt: Mechanism of phototaxis in marine zooplankton, Nature 456(7220), 395–399 (2008)

    Article  Google Scholar 

  49. I. Stewart: Lifeʼs Other Secret: The New Mathematics of the Living World (Wiley, New York 1998) p. 285

    Google Scholar 

  50. I. Stewart: Mathematics of Life (Basic Books, New York 2011) p. 358

    MATH  Google Scholar 

  51. E.M. Purcell: Life at low Reynolds number, Am. J. Phys. 45(1), 3–11 (1977)

    MathSciNet  Google Scholar 

  52. S. Vogel: The Physical World of Animalsand Plants, Lifeʼs Devices (Princeton Univ. Press, Princeton 1988) p. 367

    Google Scholar 

  53. R.A. Raff, T.C. Kaufman: Embryos, Genes, and Evolution (Indiana Univ. Press, Bloomington 1991) p. 395

    Google Scholar 

  54. R.A. Raff: The Shape of Life: Genes, Development, and the Evolution of Animal Form (Univ. Chicago Press, Chicago 1996) p. 520

    Google Scholar 

  55. S.A. Kauffman: Investigations (Oxford Univ. Press, Oxford 2002)

    Google Scholar 

  56. G. Forgaìcs, S. Newman: Biological Physics of the Developing Embryo (Cambridge Univ. Press, Cambridge 2005) p. 337

    Book  Google Scholar 

  57. B.K. Hall: Evolutionary Developmental Biology, 2nd edn. (Chapman Hall, London 1998)

    Google Scholar 

  58. S.B. Carroll: Endless Forms Most Beautiful: The New Science of Evo Devo and the Making of the Animal Kingdom (Norton, New York 2005) p. 350

    Google Scholar 

  59. S.B. Carroll, J.K. Grenier, S.D. Weatherbee: From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design, 2nd edn. (Blackwell, Malden 2005) p. 258

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Paulin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag

About this chapter

Cite this chapter

Paulin, M.G. (2014). Pattern Formation and Animal Morphogenesis. In: Kasabov, N. (eds) Springer Handbook of Bio-/Neuroinformatics. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30574-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30574-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30573-3

  • Online ISBN: 978-3-642-30574-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics