Springer Handbook of Bio-/Neuroinformatics pp 1071-1082 | Cite as
Quantum and Biocomputing – Common Notions and Targets
Abstract
Biocomputing and quantum computing are both relatively novel areas of information processing sciences under the umbrella natural computing established in the late twentieth century. From the practical point of view one can say that in both bio and quantum paradigms, the purpose is to replace the traditional media of computing by an alternative. Biocomputing is based on an appropriate treatment of biomolecules, and quantum computing is based on the physical realization of computation on systems so small that they must be described by using quantum mechanics. The efficiency of the proposed biomolecular computing is based on massive parallelism, which is implementable by already existing technology for small instances. In a sense, also quantum computing involves parallelism. From time to time, there are proposals or attempts to create a uniform approach to both biocomputational and quantum parallelism. The main purpose of this article is the explain why this a very challenging task. For this aim, we present the usual mathematical formalism needed to speak about quantum computing and compare quantum parallelism to its biomolecular counterpart.
Keywords
Quantum Computing Quantum Computer Quantum Algorithm Quantum Circuit Bell InequalityAbbreviations
- DNA
deoxyribonucleic acid
- EPR
Einstein–Podolsky–Rosen
- NP
neuritic plaque
- RSA
Rivest, Shamir, Adleman
References
- 59.1.L.M. Adleman: Molecular computation of solutions to combinatorial problems, Science 266(11), 1021–1024 (1994)CrossRefGoogle Scholar
- 59.2.R.J. Lipton: DNA solution of hard computational problems, Science 268(5210), 542–545 (1995)CrossRefGoogle Scholar
- 59.3.M.L. Minsky, S.A. Papert: Perceptrons (MIT Press, Cambridge 1969)MATHGoogle Scholar
- 59.4.P.W. Shor: Algorithms for quantum computation: Discrete log and factoring, Proc. 35th Annu. IEEE Symp. Found. Comput. Sci. (1994) pp. 20–22Google Scholar
- 59.5.A.M. Turing: On computable numbers, with an application to the entscheidungsproblem, Proc. Lond. Math. Soc. 2(42), 230–265 (1936)MathSciNetMATHGoogle Scholar
- 59.6.J. von Neumann: Thermodynamik quantummechanischer Gesamheiten, Nachr. Ges. Wiss. Gött. 1, 273–291 (1927)Google Scholar
- 59.7.J. von Neumann: Mathematische Grundlagen der Quantenmechanik (Springer, Berlin 1932)MATHGoogle Scholar
- 59.8.P.A. Benioff: The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines, J. Stat. Phys. 22(5), 563–591 (1980)MathSciNetCrossRefGoogle Scholar
- 59.9.P.A. Benioff: Quantum mechanical Hamiltonian models of discrete processes that erase their own histories: Application to turing machines, Int. J. Theor. Phys. 21(3/4), 177–202 (1982)MathSciNetCrossRefMATHGoogle Scholar
- 59.10.R.P. Feynman: Simulating physics with computers, Int. J. Theor. Phys. 21(6/7), 467–488 (1982)MathSciNetCrossRefGoogle Scholar
- 59.11.D. Deutsch: Quantum theory, the Church–Turing principle and the universal quantum computer, Proc. R. Soc. A 400, 97–117 (1985)MathSciNetCrossRefMATHGoogle Scholar
- 59.12.D. Deutsch: Quantum computational networks, Proc. R. Soc. A 425, 73–90 (1989)MathSciNetCrossRefMATHGoogle Scholar
- 59.13.D. Deutsch, R. Jozsa: Rapid solutions of problems by quantum computation, Proc. R. Soc. A 439, 553 (1992)MathSciNetCrossRefMATHGoogle Scholar
- 59.14.D.R. Simon: On the power of quantum computation, Proc. 35th Annu. IEEE Symp. Found. Comput. Sci. (1994) pp. 116–123Google Scholar
- 59.15.E. Bernstein, U. Vazirani: Quantum complexity theory, SIAM J. Comput. 26(5), 1411–1473 (1997)MathSciNetCrossRefMATHGoogle Scholar
- 59.16.Clay Mathematics Institute: http://www.claymath.org/millennium/P_vs_NP/
- 59.17.M. Hirvensalo: Quantum Computing, 2nd edn. (Springer, Berlin, Heidelberg 2004)CrossRefMATHGoogle Scholar
- 59.18.M. Hirvensalo: Mathematics for quantum information processing. In: Handbook of Natural Computing, ed. by G. Rozenberg, T. Bäck, J. Kok (Springer, Berlin, Heidelberg 2011)Google Scholar
- 59.19.M.A. Nielsen, I.L. Chuang: Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge 2000)MATHGoogle Scholar
- 59.20.M. Hirvensalo: EPR Paradox and Bell Inequalities, Bulletin EATCS 92, 115–139 (2007)MathSciNetMATHGoogle Scholar
- 59.21.D. Bohm: Quantum Theory (Prentice-Hall, Englewood Cliffs 1951) pp. 614–619Google Scholar
- 59.22.A. Einstein, B. Podolsky, N. Rosen: Can quantum-mechanical description of physical reality be considered complete?, Phys. Rev. 47, 777–780 (1935)CrossRefMATHGoogle Scholar
- 59.23.J.S. Bell: On the Einstein–Podolsky–Rosen paradox, Physics 1, 195–200 (1964)Google Scholar
- 59.24.R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J.G. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, A. Zeilinger: Free-space distribution of entanglement and single photons over 144 km, Nat. Phys. 3(7), 481–486 (2007)CrossRefGoogle Scholar
- 59.25.A. Barenco, C.H. Bennett, R. Cleve, D.P DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. Smolin, H. Weinfurter: Elementary gates for quantum computation, Phys. Rev. A 52(5), 3457–3467 (1995)CrossRefGoogle Scholar
- 59.26.A. Kondacs, J. Watrous: On the power of quantum finite state automata, Proc. 38th Annu. Symp. Found. Comput. Sci. (1997) pp. 66–75Google Scholar
- 59.27.C. Moore, J.P. Crutchfield: Quantum automata and quantum grammars, Theor. Comput. Sci. 237(1/2), 275–306 (2000)MathSciNetCrossRefMATHGoogle Scholar
- 59.28.C.H. Bennett: Logical reversibility of computation, IBM J. Res. Dev. 17, 525–532 (1973)CrossRefMathSciNetMATHGoogle Scholar
- 59.29.M. Hirvensalo: Quantum automata with open time evolution, Int. J. Nat. Comput. Res. 1, 70–85 (2010)CrossRefGoogle Scholar
- 59.30.L.K. Grover: A fast quantum-mechanical algorithm for database search, Proc. 28th Annu. ACM Symp. Theory Comput. (1996) pp. 212–219Google Scholar
- 59.31.J. Kempe: Discrete quantum walks hit exponentially faster, Probab. Theory Relat. Fields 133(2), 215–235 (2005)MathSciNetCrossRefMATHGoogle Scholar
- 59.32.J. Kempe: Quantum random walks – an introductory overview, Contemp. Phys. 44(4), 307–327 (2003)MathSciNetCrossRefGoogle Scholar
- 59.33.D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd, O. Regev: Adiabatic quantum computation is equivalent to standard quantum computation, SIAM J. Comput. 37, 166–194 (2007)MathSciNetCrossRefMATHGoogle Scholar
- 59.34.C.H. Papadimitriou: Computational Complexity (Addison-Wesley, Reading 1994)MATHGoogle Scholar
- 59.35.R. Beals, H. Buhrman, R. Cleve, M. Mosca, R. Wolf: Quantum lower bounds by polynomials, Journal ACM 48(4), 778–797 (2001)CrossRefMathSciNetMATHGoogle Scholar
- 59.36.A. Ambainis: Quantum lower bounds by quantum arguments, J. Comput. System Sci. 64(4), 750–767 (2002)MathSciNetCrossRefMATHGoogle Scholar
- 59.37.J.I. Cirac, P. Zoller: Quantum computations with cold trapped ions, Phys. Rev. Lett. 74, 4091–4094 (1995)CrossRefGoogle Scholar
- 59.38.I.L. Chuang, N. Gershenfeld, M. Kubinec: Experimental implementation of fast quantum searching, Phys. Rev. Lett. 80, 3408–3411 (1998)CrossRefGoogle Scholar
- 59.39.J.L. OʼBrien: Optical quantum computing, Science 318, 1567–1570 (2007)CrossRefGoogle Scholar
- 59.40.C. Negrevergne, T.S. Mahesh, C.A. Ryan, M. Ditty, F.-Y. Cyr-Racine, W. Power, N. Boulant, T. Havel, D.G. Cory, R. Laflamme: Benchmarking quantum control methods on a 12-qubit system, Phys. Rev. Lett. 96, 170501 (2006)CrossRefGoogle Scholar
- 59.41.S. Beauregard: Circuit for Shorʼs algorithm using 2n + 3 qubits, Quantum Inform. Comput. 3(2), 175–185 (2003)MathSciNetMATHGoogle Scholar
- 59.42.V.V. Nelayev, K.N. Dovzhik, V.V. Lyskouski: Quantum effects in biomolecular structures, Rev. Adv. Mater. Sci. 20, 42–47 (2009)Google Scholar