Brain-Like Robotics

  • Richard J. Duro
  • Francisco Bellas
  • José A. Becerra Permuy


This chapter aims to provide an overview of what is happening in the field of brain like robotics, what the main issues are and how they are being addressed by different authors. It starts by introducing several concepts and theories on the evolution and operation of the brain and provides a basic biological and operational framework as background to contextualize the topic. Building on these foundations, the main body of the chapter is devoted to the different contributions within the robotics community that use brain-like models as a source of inspiration for controlling real robots. These contributions are addressed from two perspectives. On one hand the main cognitive architectures developed under a more or less strict brain-like point of view are presented, offering a brief description of each architecture as well as highlighting some of their main contributions. Then the point of view is changed and a more extensive review is provided of what is being done within three areas that we consider key for the future development of autonomous brain-like robotic creatures that can live and work in human environments interacting with other robots and human beings. These are: Memory, Attention and Emotions. This review is followed by a description of some of the current projects that are being carried out or have recently finished within this field as well as of some robotic platforms that are currently being used. The chapter is heavily referenced in the hope that this extensive compilation of papers and books from the different areas that are relevant within the field are useful for the reader to really appreciate its breadth and beauty.


Episodic Memory Action Selection Humanoid Robot Attentional System Cognitive Architecture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





artificial intelligence


artificial neural network


brain-based device


brain-like robotics


cognitive developmental robotics


epigenetic robotics architecture


focus of attention


intelligent adaptive Curiosity


incremental hierarchical discriminant regression


images line


intelligent machine architecture


inhibition of return


infero temporal cortex


lateral geniculate nucleus


long-term memory


multi-level Darwinist brain


Markov decision process


middle temporal cortex


posterior parietal cortex


self-aware and self-effecting architecture


sensory memory


self-organizing map


short-term memory


visual field




probabilistic spiking neural network


  1. 57.1.
    H. Ritter, J.J. Steil, C. Noelker, F. Roethling, P.C. McGuire: Neural architectures for robot intelligence, Rev. Neurosci. 14(1/2), 121–143 (2003)Google Scholar
  2. 57.2.
    W. Duch: Brain-inspired conscious computing architecture, J. Mind Behav. 26(1/2), 1–21 (2005)Google Scholar
  3. 57.3.
    S. Sloman: Grand challenge 5: The Architecture of Brain and Mind: Integrating Low-Level Neuronal Brain Processes with High-Level Cognitive Behaviours in a Functioning Robot, Technical Report, COSY-TR-0607 (School of Computer Science, University of Birmingham UK 2006)Google Scholar
  4. 57.4.
    R. Brooks: I, Rodney Brooks, am a robot, IEEE Spectr. 45(6), 71–75 (2008)CrossRefGoogle Scholar
  5. 57.5.
    H. Jerison: Evolution of the Brain and Intelligence (Academic, New York 1973)Google Scholar
  6. 57.6.
    W. Hodos: Some perspectives on the evolution of intelligence and the brain. In: Animal Mind—Human Mind, ed. by D.R. Griffin (Springer, Berlin, Heidelberg 1982) pp. 33–56CrossRefGoogle Scholar
  7. 57.7.
    A.B. Butler, W. Hodos: Comparative Vertebrate Neuroanatomy (Wiley-Liss, New York 1996)Google Scholar
  8. 57.8.
    P.H. Harvey, J.R. Krebs: Comparing brains, Science 249, 140–146 (1990)CrossRefGoogle Scholar
  9. 57.9.
    R.G. Northcutt: Evolution of the telencephalon in nonmammals, Annu. Rev. Neurosci. 4, 301–350 (1981)CrossRefGoogle Scholar
  10. 57.10.
    R.G. Northcutt, J.H. Kaas: The emergence and evolution of mammalian neocortex, Trends Neurosci. 18, 373–379 (1995)CrossRefGoogle Scholar
  11. 57.11.
    S. Walker: Animal Thought (Routledge Kegan Paul, London 1983)Google Scholar
  12. 57.12.
    M.G. Belekhova, N.P. Veselkin: Telencephalization and transfer of function in the central nervous system of vertebrates in light of current data, J. Evol. Biochem. Physiol. 21, 357–365 (1985)Google Scholar
  13. 57.13.
    A.H. Cohen: Evolution of the vertebrate central pattern generator for locomotion. In: Neural Control of Rhythmic Movements in Vertebrates, ed. by A.H. Cohen, S. Rossignol, S. Grillner (Wiley, New York 1988) pp. 129–166Google Scholar
  14. 57.14.
    W. Wilczynski: Central neural systems subserving a homoplasous periphery, Am. Zool. 24, 755–763 (1984)CrossRefGoogle Scholar
  15. 57.15.
    T.W. Deacon: Rethinking mammalian brain evolution, Am. Zool. 30, 629–705 (1990)CrossRefGoogle Scholar
  16. 57.16.
    P.A. Getting: Emerging principles governing the operation of neural networks, Annu. Rev. Neurosci. 12, 185–204 (1989)CrossRefGoogle Scholar
  17. 57.17.
    R.M. Harris-Warrick: Modulation of neural networks for behaviour, Annu. Rev. Neurosci. 14, 39–57 (1991)CrossRefGoogle Scholar
  18. 57.18.
    T.J. Prescott, P. Redgrave, K. Gurney: Layered control architectures in robots and vertebrates, Adapt. Behav. 7, 99–127 (1999)CrossRefGoogle Scholar
  19. 57.19.
    J.H. Jackson: Evolution and dissolution of the nervous system, Br. Med. J. I, 662 (1884)Google Scholar
  20. 57.20.
    K.E. von Baer: Über Entwicklungsgeschichte der Thiere: Beobachtung und Reflexion, Vol. 2 (Königsberg, Bornträger 1828) pp. 1828–1888Google Scholar
  21. 57.21.
    H.W. Magoun: The Waking Brain (Thomas, Springfield, Illinois 1958)CrossRefGoogle Scholar
  22. 57.22.
    G.G. Berntson, S.T. Boysen, J.T. Cacioppo: Neurobehavioral organization and the cardinal principle of evaluative bivalence, Annu. New York Acad. Sci. 702, 75–102 (1993)CrossRefGoogle Scholar
  23. 57.23.
    P. Teitelbaum, T. Schallert, I.Q. Whishaw: Sources of spontaneity in motivated behaviour. In: Handbook of Behavioural Neurobiology, Vol. 6, ed. by P. Teitelbaum, E. Satinoff (Plenum, New York 1983) pp. 23–65Google Scholar
  24. 57.24.
    J.W. Rudy, S. Stadler-Morris, P. Albert: Ontogeny of spatial navigation behaviours in the rat: Dissociation of proximal – and distal – cue-based behaviours, Behav. Neurosci. 101, 62–73 (1987)CrossRefGoogle Scholar
  25. 57.25.
    C.R. Gallistel: The Organization of Action: A New Synthesis (Lawrence Erlbaum, Hillsdale, NJ 1980)Google Scholar
  26. 57.26.
    R. Brooks: A robust layered control system for a mobile robot, IEEE J. Robot. Autom. 2(1), 14–23 (1986)CrossRefGoogle Scholar
  27. 57.27.
    J. Kien: From command fibers to command systems to consensus are these labels really useful anymore, Behav. Brain Sci. 9, 732–733 (1986)CrossRefGoogle Scholar
  28. 57.28.
    A.H. Cohen: The role of heterarchical control in the evolution of central pattern generators, Brain, Behav. Evol. 40, 112–124 (1992)CrossRefGoogle Scholar
  29. 57.29.
    W. Penfield: The Mystery of the Mind (Princeton Univ., Princeton, NJ 1975)Google Scholar
  30. 57.30.
    R. Thompson: Centrencephalic theory, the general learning system, and subcortical dementia, Annu. New York Acad. Sci. 702, 197–223 (1993)CrossRefGoogle Scholar
  31. 57.31.
    M.P. Young: Special issue on brain-structure-function relationships, advances from neuroinformatics, Philos. Trans. R. Soc. Lond. B 355, 3–6 (2000)CrossRefGoogle Scholar
  32. 57.32.
    A. Meyering, H. Ritter: Learning to recognize 3d-hand postures from perspective pixel images, Artif. Neural Netw. 2, 821–824 (1992)Google Scholar
  33. 57.33.
    M.P. Young, J.W. Scannel: Analysis and modelling of the organization of the mammalian cerebral cortex. In: Experimental and Theoretical Advances in Biological Pattern Formation, Vol. 259 of NATO ASI Series A, ed. by H.G. Othmer, P.K. Maini, J.D. Murray (Plenum, New York 1993) pp. 369–384CrossRefGoogle Scholar
  34. 57.34.
    W. Duch: Platonic model of mind as an approximation to neurodynamics. In: Brain-Like Computing and Intelligent Information Systems, ed. by S. Amari, N. Kasabov (Springer, Singapore 1997) pp. 491–512Google Scholar
  35. 57.35.
    W.J. Freeman: Neurodynamics, An Exploration in Mesoscopic Brain Dynamics (Springer, London 2000)zbMATHCrossRefGoogle Scholar
  36. 57.36.
    M. Spivey, M. Grosjean, G. Knoblich: Continuous attraction toward phonological competitors, Proc. Natl. Acad. Sci. USA 102(29), 10393–10398 (2005)CrossRefGoogle Scholar
  37. 57.37.
    T.D. Frank, A. Daffertshofer, C.E. Peper, P.J. Beek, H. Haken: Towards a comprehensive theory of brain activity: Coupled oscillator systems under external forces, Physica D 144, 62–86 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 57.38.
    N. Kasabov, L. Benuskova, S. Wysoski: Biologically plausible computational neurogenetic models: Modeling the interaction between genes/proteins, neurons and neural networks, J. Comput. Theoret. Nanosci. 2(4), 569–575 (2005)CrossRefGoogle Scholar
  39. 57.39.
    N. Kasabov, R. Schliebs, H. Kojima: Probabilistic computational neurogenetic modelling: From cognitive systems to Alzheimerʼs disease, IEEE Trans. Auton. Ment. Dev. 3(4), 300–311 (2011)CrossRefGoogle Scholar
  40. 57.40.
    Y. Meng, Y. Jin, J. Yin, M. Conforth: Human activity detection using spiking neural networks regulated by a gene regulatory network, Proc. Int. Joint Conf. Neural Netw. (IJCNN) (2010) pp. 2232–2237Google Scholar
  41. 57.41.
    A.F. Morse, J. de Greeff, T. Belpeame, A. Cangelosi: Epigenetic robotic architecture (ERA), IEEE Trans. Auton. Ment. Develop. 2(4), 325–339 (2010)CrossRefGoogle Scholar
  42. 57.42.
    W. Morris (Ed.): The American Heritage Dictionary of the English Language, 4th edn. (Houghton Mifflin Harcourt, Boston 2000)Google Scholar
  43. 57.43.
    E.C. de Castro, R.R. Gudwin: An episodic memory for a simulated autonomous robot, Proc. Robot. 2010 (2010) pp. 1–7Google Scholar
  44. 57.44.
    M.D. Byrne: Cognitive architecture. In: The Human-Computer Interaction Handbook, ed. by J.A. Jacko, A. Sears (L. Erlbaum Associates Inc., Hillsdale, NJ, USA 2002) pp. 97–117Google Scholar
  45. 57.45.
    B. van Heuveln: What is Cognitive Robotics? (Cognitive Science Department, Rensselaer Polytechnic Institute, Troy 2010), available online at Google Scholar
  46. 57.46.
    J.E. Laird, A. Newell, P.S. Rosenbloom: SOAR: An architecture for general intelligence, Artif. Intell. 33(1), 1–64 (1987)MathSciNetCrossRefGoogle Scholar
  47. 57.47.
    A. Newell: Unified Theories of Cognition (Harvard University, Cambridge 1994)Google Scholar
  48. 57.48.
    J.E. Laird: Toward cognitive robotics, SPIE Def. Sens. Conf. (2009)Google Scholar
  49. 57.49.
    J.E. Laird: Extending the soar cognitive architecture, Proc. 2008 Conf. Artif. Gen. Intell., ed. by P. Wang, B. Goertzel, S. Franklin (IOS, Amsterdam 2008) pp. 224–235Google Scholar
  50. 57.50.
    J.R. Anderson, C. Lebiere: The Atomic Components of Thought (Lawrence Erlbaum Associates, Mahwah, NJ 1998)Google Scholar
  51. 57.51.
    J.R. Anderson, D. Bothell, M.D. Byrne, S. Douglass, C. Lebiere, Y. Qin: An integrated theory of the mind, Psychol. Rev. 111(4), 1036–1060 (2004)CrossRefGoogle Scholar
  52. 57.52.
    C. Lebiere, J.R. Anderson: A connectionist implementation of the ACT-R production system, 15th Annu. Conf. Cogn. Sci. Soc. (1993) pp. 635–640Google Scholar
  53. 57.53.
    B.J. Best, C. Lebiere: Cognitive agents interacting in real and virtual worlds. In: Cognition and Multi-Agent Interaction: From Cognitive Modeling to Social Simulation, ed. by R. Sun (Cambridge Univ. Press, Cambridge 2006) pp. 186–218Google Scholar
  54. 57.54.
    D. Friedlander, S. Franklin: LIDA and a Theory of Mind, 1st Conf. Artif. Gen. Intell. (AGI) (Amsterdam 2008) pp. 137–148Google Scholar
  55. 57.55.
    S. Franklin: Cognitive robots: Perceptual associative memory and learning, IEEE Int. Workshop on Robot and Human Interact. Commun. (ROMAN) (2005) pp. 427–433Google Scholar
  56. 57.56.
    S. Franklin, M. Ferkin: Using broad cognitive models to apply computational intelligence to animal cognition. In: Applications of Computational Intelligence in Biology, Vol. 122, ed. by T. Smolinski, M. Milanova, A.-E. Hassanien (Springer Berlin, Heidelberg 2008) pp. 363–394CrossRefGoogle Scholar
  57. 57.57.
    D.L. De Luise, G. Barrera, S. Franklin: Robot localization using consciousness, J. Pattern Recognit. Res. 6, 1–23 (2011)CrossRefGoogle Scholar
  58. 57.58.
    J. Bach: The micropsi agent architecture, 5th Int. Conf. Cognit. Model. (ICCM) (Bamberg, Germany 2003) pp. 15–20Google Scholar
  59. 57.59.
    J. Bach: Principles of Synthetic Intelligence PSI: An Architecture of Motivated Cognition, 1st edn. (Oxford Univ., Inc., New York, USA 2009)CrossRefGoogle Scholar
  60. 57.60.
    J.S. Albus, A.M. Meystel: Engineering of Mind: An Introduction to the Science of Intelligent Systems (Wiley, New York 2001)Google Scholar
  61. 57.61.
    J.S. Albus: Reverse engineering the brain. In: AAAI Fall Symp. Biol. Inspired Cogn. Archit. (Arlington, Virginia, USA 2008) pp. 5–14Google Scholar
  62. 57.62.
    B. Goertzel: The Hidden Pattern: A Patternist Philosophy of Mind (Brown Walker, FL 2006)Google Scholar
  63. 57.63.
    B. Goertzel, H. de Garis: XIA-MAN: An extensible, integrative architecture for intelligent humanoid robotics, AAAI Fall Symp. Biol. Inspired Cogn. Archit. (2008) pp. 65–74Google Scholar
  64. 57.64.
    J. Weng: On developmental mental architectures, Neurocomputing 70(13–15), 2303–2323 (2007)CrossRefGoogle Scholar
  65. 57.65.
    M. Asada, K.F. MacDorman, H. Ishiguro, Y. Kuniyoshi: Cognitive developmental robotics as a new paradigm for the design of humanoid robots, Robot. Auton. Syst. 37, 185–193 (2001)zbMATHCrossRefGoogle Scholar
  66. 57.66.
    D. Vernon, G. Metta, G. Sandini: The iCub cognitive architecture: Interactive development in a humanoid robot, Proc. ICDL 2007 (2007) pp. 122–127Google Scholar
  67. 57.67.
    J.L. Krichmar, G.N. Reeke: The Darwin brain-based automata: Synthetic neural models and real-world devices. In: Modelling in the Neurosciences: From Biological Systems to Neuromimetic Robotics, ed. by G.N. Reeke, R.R. Poznanski, K.A. Lindsay, J.R. Rosenberg, O. Sporns (Taylor and Francis, Boca Raton 2005) pp. 613–638Google Scholar
  68. 57.68.
    J.L. Krichmar, G.M. Edelman: Principles underlying the construction of brain-based devices, Proc. AISB ʼ06, Vol. 2 (2006) pp. 37–42Google Scholar
  69. 57.69.
    J. Weng: Developmental robotics: Theory and experiments, Int. J. Humanoid Robot. 1(2), 199–236 (2004)CrossRefGoogle Scholar
  70. 57.70.
    M. Asada, K. Hosoda, Y. Kuniyoshi, H. Ishiguro, T. Inui, Y. Yoshikawa, M. Ogino, C. Yoshida: Cognitive Developmental Robotics: A Survey, IEEE Trans. Auton. Ment. Dev. 1(1), 12–34 (2009)CrossRefGoogle Scholar
  71. 57.71.
    Y. Zhang, J. Weng: Grounded auditory development by a developmental robot, Proc. INNS-IEEE Int. Jt. Conf. Neural Netw. (2001) pp. 1059–1064Google Scholar
  72. 57.72.
    S. Zeng, J. Weng: Online-learning and attention-based approach to obstacle avoidance using a range finder, J. Intell. Robotic Syst. 50(3), 219–239 (2007)CrossRefGoogle Scholar
  73. 57.73.
    G. Metta, G. Sandini, D. Vernon, L. Natale, F. Nori: The iCub humanoid robot: An open platform for research in embodied cognition, PerMIS: Perform. Metr. Intell. Syst. Workshop (2008)Google Scholar
  74. 57.74.
    O. Ly, P.-Y. Oudeyer: Acroban the humanoid: Playful and compliant physical child-robot interaction, ACM SIGGRAPHʼ2010 Emerg. Technol. (2010)Google Scholar
  75. 57.75.
    K. Kawamura, W. Dodd, P. Ratanaswasd, R.A. Gutierrez: Development of a robot with a sense of self, IEEE Int. Symp. Comput. Intell. Robot. Autom. (CIRA) (2005) pp. 211–217Google Scholar
  76. 57.76.
    K. Kawamura, S.M. Gordon, P. Ratanaswasd, E. Erdemir, J.F. Hall: Implementation of cognitive control for a humanoid robot, Int. J. Humanoid Robot. 5(4), 547–586 (2008)CrossRefGoogle Scholar
  77. 57.77.
    P. Ratanaswasd, W. Dodd, K. Kawamura, D.C. Noelle: Modular behavior control for a cognitive robot, 12th Int. Conf. Adv. Robot. (ICAR) (2005) pp. 713–718Google Scholar
  78. 57.78.
    P. Ratanaswasd, C. Garber, A. Lauf: Situation-based stimuli response in a humanoid robot, 5th Int. Conf. Dev. Learn. (2006)Google Scholar
  79. 57.79.
    B. Ulutas, E. Erdemir, K. Kawamura: Application of a hybrid controller with non-contact impedance to a humanoid robot, Int. Workshop Var. Struct. Syst. (VSS) (2008) pp. 378–383Google Scholar
  80. 57.80.
    M.P. Shanahan: A cognitive architecture that combines internal simulation with a global workspace, Conscious. Cogn. 15, 433–449 (2006)CrossRefGoogle Scholar
  81. 57.81.
    B.J. Baars: A Cognitive Theory of Consciousness (Cambridge Univ. Press, Cambridge 1998)Google Scholar
  82. 57.82.
    B.J. Baars: In the Theater of Consciousness (Oxford Univ., New York 1997)CrossRefGoogle Scholar
  83. 57.83.
    B.J. Baars: The conscious access hypothesis: Origins and recent evidence, Trends Cogn. Sci. 6(1), 47–52 (2002)CrossRefGoogle Scholar
  84. 57.84.
    B.J. Baars, S. Franklin: How conscious experience and working memory interact, Trends Cogn. Sci. 7, 166–172 (2003)CrossRefGoogle Scholar
  85. 57.85.
    M.P. Shanahan: Consciousness, emotion, and imagination: A brain-inspired architecture for cognitive robotics, Proc. AISB 2005 Symp. Next Gener. Approaches Mach. Conscious (2005) pp. 26–35Google Scholar
  86. 57.86.
    M.P. Shanahan, B.J. Baars: Global workspace theory emerges unscathed, Behav. Brain Sci. 30(5/6), 524–525 (2007)Google Scholar
  87. 57.87.
    J.L. Krichmar, G.M. Edelman: Brain-based devices: Intelligent systems based on principles of the nervous system, IEEE/RSJ Int. Conf. Intell. Robotic Syst. (IROS), Vol. 1 (2003) pp. 940–945Google Scholar
  88. 57.88.
    G.M. Edelman: Learning in and from brain-based devices, Science 318(5853), 1103–1105 (2007)CrossRefGoogle Scholar
  89. 57.89.
    J.G. Fleischer, B. Szatmáry, D.B. Hutson, D.A. Moore, J.A. Snook, G.M. Edelman, J.L. Krichmar: A neurally controlled robot competes and cooperates with humans in Segway soccer, IEEE Int. Conf. Robot. Autom. (ICRA) (2006) pp. 3673–3678Google Scholar
  90. 57.90.
    G.N. Reeke Jr., O. Sporns, G.M. Edelman: Synthetic neural modeling: The `Darwinʼ series of recognition automata, Proc. IEEE 78(9), 1498–1530 (1990)CrossRefGoogle Scholar
  91. 57.91.
    J. Weng, C. Evans, W.S. Hwang, Y.B. Lee: The developmental approach to artificial intelligence: Concepts, developmental algorithms and experimental results, Proc. NSF Des. Manuf. Grantees Conf. (1999)Google Scholar
  92. 57.92.
    J. Weng, W. Hwang: Online image classification using IHDR, Int. J. Doc. Anal. Recognit. 5(2/3), 118–125 (2002)Google Scholar
  93. 57.93.
    J. Weng, M. Luciw: Online learning for attention, recognition, and tracking by a single developmental framework, Proc. 23rd IEEE Conf. Comput. Vis. Pattern Recognit. 4th IEEE Online Learn. Comput. Vis. (2010) pp. 1–8Google Scholar
  94. 57.94.
    G. Metta, L. Natale, F. Nori, G. Sandini, D. Vernon, L. Fadiga, C. von Hofsten, K. Rosander, M. Lopes, J. Santos-Victor, A. Bernardino, L. Montesano: The iCub humanoid robot: An open-systems platform for research in cognitive development, Neural Netw. 23(8–9), 1125–1134 (2010)CrossRefGoogle Scholar
  95. 57.95.
    D. Vernon, C. von Hofsten, L. Fadiga: A Roadmap for Cognitive Development in Humanoid Robots. In: Cognitive Systems Monographs, Vol. 11, ed. by R. Dillmann, Y. Nakamura, S. Schaal, D. Vernon (Springer, Berlin, Heidelberg 2010)Google Scholar
  96. 57.96.
    D. Vernon: Enaction as a conceptual framework for developmental cognitive robotics, Paladyn J. Behav. Robot. 1(2), 89–98 (2010)Google Scholar
  97. 57.97.
    D. Vernon, G. Metta, G. Sandini: A survey of artificial cognitive systems: Implications for the autonomous development of mental capabilities in computational agents, IEEE Trans. Evol. Comput. 11(2), 151–180 (2007)CrossRefGoogle Scholar
  98. 57.98.
    R.J. Duro, J. Santos, F. Bellas, A. Lamas: On line Darwinist cognitive mechanism for an artificial organism, Proc. Suppl. Book SAB2000 (2000) pp. 215–224Google Scholar
  99. 57.99.
    F. Bellas, R.J. Duro, A. Faiña, D. Souto: Multilevel Darwinist brain (MDB): Artificial evolution in a cognitive architecture for real robots, IEEE Trans. Auton. Ment. Dev. 2(4), 340–354 (2010)CrossRefGoogle Scholar
  100. 57.100.
    B. Santos-Diez, F. Bellas, A. Faiña, R.J. Duro: Lifelong learning by evolution in robotics: Bridging the gap from theory to reality, Proc. Int. Symp. Evol. Intell. Syst. (2010) pp. 48–53Google Scholar
  101. 57.101.
    R.J. Duro, F. Bellas, J.A. Becerra: Evolutionary architecture for lifelong learning and real-time operation in autonomous robots. In: Evolving Intelligent Systems: Methodology and Applications, ed. by P. Angelov, D.P. Filev, N. Kasabov (Wiley, New Jersey 2010)Google Scholar
  102. 57.102.
    F. Bellas, J.A. Becerra, R.J. Duro: Internal and external memory in neuroevolution for learning in non-stationary problems, Lect. Notes Artif. Intell. 5040, 62–72 (2008)Google Scholar
  103. 57.103.
    F. Bellas, R.J. Duro: Multilevel Darwinist brain in robots, initial implementation, Proc. 1st Int. Conf. Inform. Control, Autom. Robot. (2004) pp. 25–32Google Scholar
  104. 57.104.
    F. Bellas, J.A. Becerra, R.J. Duro: Induced behaviour in a real agent using the multilevel Darwinist brain, Lect. Notes Comput. Sci. 3562, 425–434 (2005)CrossRefGoogle Scholar
  105. 57.105.
    A.F. Morse, J. De Greeff, T. Belpaeme, A. Cangelosi: Epigenetic robotics architecture (ERA), IEEE Trans. Auton. Ment. Dev. 2(4), 325–339 (2010)CrossRefGoogle Scholar
  106. 57.106.
    P. Gardenfors: Conceptual spaces as a framework for knowledge representation, Mind and Matter 2(2), 9–27 (2004)Google Scholar
  107. 57.107.
    J. Parthemore, A.F. Morse: Reclaiming symbols: An enactive account of the inter-dependence of concepts and experience, Pragmat. Cogn. 18(2), 273–312 (2010)CrossRefGoogle Scholar
  108. 57.108.
    A.F. Morse, T. Belpaeme, A. Cangelosi, L.B. Smith: Thinking with your body: Modelling spatial biases in categorization using a real humanoid robot, 32nd Annu. Conf. Cogn. Sci. Soc. (2010)Google Scholar
  109. 57.109.
    A.F. Morse, R. Lowe, T. Ziemke: Manipulating space: Modelling the role of transient dynamics in inattentional blindness, Connect. Sci. 21(4), 275–295 (2009)CrossRefGoogle Scholar
  110. 57.110.
    A.F. Morse, M. Aktius: Dynamic liquid association: Complex learning without implausible guidance, Neural Netw. 22(1), 875–889 (2009)CrossRefGoogle Scholar
  111. 57.111.
    A.F. Morse, T. Ziemke: Action, detection, and perception: A computational model of the relation between movement and orientation selectivity in the cerebral cortex, Proc. CogSci. 2009 – 31st Annu. Conf. Cogn. Sci. Soc. (2009)Google Scholar
  112. 57.112.
    A. Cangelosi, T. Belpaeme, G. Sandini, G. Metta, L. Fadiga, G. Sagerer, K. Rohlfing, B. Wrede, S. Nolfi, D. Parisi, C. Nehaniv, K. Dautenhahn, J. Saunders, K. Fischer, J. Tani, D. Roy: The ITALK project: Integration and transfer of action and language knowledge, Proc. 3rd ACM/IEEE Int. Conf. Hum. Robot Interact. (HRI 2008) (2008)Google Scholar
  113. 57.113.
    A. Baranes, P.-Y. Oudeyer: R-IAC: Robust intrinsically motivated exploration and active learning, IEEE Trans. Auton. Mental Dev. 1(3), 155–169 (2009)CrossRefGoogle Scholar
  114. 57.114.
    A. Baranes, P.-Y. Oudeyer: Intrinsically motivated goal exploration for active motor learning in robots: A Case Study, Proc. IEEE/RSJ Int. Conf. Intell. Robotic Syst. (2010)Google Scholar
  115. 57.115.
    P.-Y. Oudeyer, F. Kaplan, V. Hafner: Intrinsic motivation systems for autonomous mental development, IEEE Trans. Evol. Comput. 11(2), 265–286 (2007)CrossRefGoogle Scholar
  116. 57.116.
    F. Kaplan, P.-Y. Oudeyer, B. Bergen: Computational models in the debate over language learnability, Infant Child Dev. 17(1), 55–80 (2008)CrossRefGoogle Scholar
  117. 57.117.
    J.M. Fuster: The Prefrontal Cortex: Anatomy, Physiology, and Neuropsychology of the Frontal Lobe, 2nd edn. (Lippincott, Williams Wilkins 1997)Google Scholar
  118. 57.118.
    B.R. Postle: Working memory as an emergent property of the mind and brain, Neuroscience 139(1), 23–38 (2006)CrossRefGoogle Scholar
  119. 57.119.
    S. Jockel, M. Weser, D. Westhoff, J. Zhang: Towards an episodic memory for cognitive robots, Proc. 6th Int. Cognit. Rob. Workshop 18th Eur. Conf. Artif. Intell. (ECAI) (IOS, July 21–22 2008) pp. 68–74Google Scholar
  120. 57.120.
    T. Deutsch, A. Gruber, R. Lang, R. Velik: Episodic memory for autonomous agents, Conf. Hum. Syst. Interact., ed. by Łukasz Piatek (Rzeszow University of Information, Technology and Management, Kraków 2008) pp. 621–626Google Scholar
  121. 57.121.
    P. Kronberg: Evolving short-term memory for behavior-based robots, Master Thesis (Chalmers Univ. Technol., Göteborg 2003)Google Scholar
  122. 57.122.
    S.A. Christianson (Ed.): Handbook of Emotion and Memory: Current Research and Theory (Lawrence Erlbaum Associates, New Jersey 1992)Google Scholar
  123. 57.123.
    E.R. Kandel, J.H. Schwartz, T.M. Jessell: Principles of Neural Science, 4th edn. (McGraw-Hill, New York 2000)Google Scholar
  124. 57.124.
    R.A. Brooks: Elephants Donʼt Play Chess, Designing Autonomous Agents: Theory and Practice from Biology to Engineering and Back (MIT, Cambridge USA 1990)Google Scholar
  125. 57.125.
    Roomba vacuum cleaner website: (2011)
  126. 57.126.
    J. Phillips, D. Noelle: A biologically inspired working memory framework for robots, Proc. IEEE Intl. Workshop Robot. Hum. Interact. Commun. (RO-MAN) (2005)Google Scholar
  127. 57.127.
    J.R. Anderson, M. Matessa: The rational analysis of categorization and the ACT-R architecture. In: Rational Models of Cognition, ed. by M. Oaksford, N. Chater (Oxford Univ. Press, Oxford 1998) pp. 197–217Google Scholar
  128. 57.128.
    B. Goertzel, H. de Garis: XIA-MAN: An extensible, integrative architecture for intelligent humanoid robotics, Proc. BICA-08 (2008) pp. 86–90Google Scholar
  129. 57.129.
    J.M. Fuster: Network memory, Trends Neurosci. 20(10), 451–459 (1997)CrossRefGoogle Scholar
  130. 57.130.
    I. Rosenfield: The Strange, Familiar, and Forgotten. An Anatomy of Consciousness (Vintage Books, New York 1993)Google Scholar
  131. 57.131.
    K. Dautenhahn: Embodiment and interaction in socially intelligent life-like agents. In: Computation for Metaphors, Analogy, and Agents, Lecture Notes In Computer Science, Vol. 1562, ed. by C.L. Nehaniv (Springer, Berlin, Heidelberg 1999) pp. 102–141CrossRefGoogle Scholar
  132. 57.132.
    R. Atkinson, R. Shiffrin: Human memory: A proposed system and its control processes. In: The Psychology of Learning and Motivation, Vol. 2, ed. by K.W. Spence, J.T. Spence (Academic Press, New York 1968) pp. 89–195Google Scholar
  133. 57.133.
    P.A. Vargas, W.C. Ho, M. Lim, S. Enz, R. Aylett: To forget or not to forget: Towards a roboethical memory control, Proc. AISB-2009 (2009) pp. 18–23Google Scholar
  134. 57.134.
    J.M. Levenson: Epigenetic mechanisms: A common theme in vertebrate and invertebrate memory formation, Cell. Mol. Life Sci. 63, 1009–1016 (2006)CrossRefGoogle Scholar
  135. 57.135.
    F. Dayoub, T. Duckett, G. Cielniak: Toward an object-based semantic memory for long-term operation of mobile service robots. In: Workshop on Semantic Mapping and Autonomous Knowledge Acquisition (IROS, Taipei, Taiwan 2010)Google Scholar
  136. 57.136.
    C. Gurrin, H. Lee, J. Hayes: iForgot: A model of forgetting in robotic memories, Proc. HRI 2010 – 5th ACM/IEEE Int. Conf. Hum.-Robot. Interact. (2010) pp. 93–94Google Scholar
  137. 57.137.
    A.D. Baddeley, G. Hitch: Working memory. In: The Psychology of Learning and Motivation: Advances in Research and Theory, Vol. 8, ed. by G.H. Bower (Academic Press, New York 1974) pp. 47–89Google Scholar
  138. 57.138.
    M. Solms, O. Turnbull: The Brain and the Inner World (Karnac/Other, Cathy Miller Foreign Rights Agency, London, England 2002)Google Scholar
  139. 57.139.
    N. Cowan: What are the differences between long-term, short-term, and working memory? Prog. Brain Res. 169, 323–338 (2008)CrossRefGoogle Scholar
  140. 57.140.
    S. Gordon, J. Hall: System integration with working memory management for robotic behavior learning, Proc. 5th Int. Conf. Dev. Learn. (ICDLʼ06) (2006)Google Scholar
  141. 57.141.
    D.M. Wilkes, M. Tugcu, J.E. Hunter, D. Noelle: Working memory and perception, Proc. IEEE Int. Workshop Robot. Hum. Interact. Commun. (2005) pp. 686–691Google Scholar
  142. 57.142.
    E. Tulving: Episodic and Semantic Memory, in Organization of Memory (Academic, NewYork 1972) pp. 89–101Google Scholar
  143. 57.143.
    S. Halpern: Canʼt Remember what I Forgot: The Good News From the Front Lines of Memory Research (Harmony Books, New York 2008)Google Scholar
  144. 57.144.
    L.R. Squire, B. Knowlton, G. Musen: The structure and organization of memory, Annu. Rev. Psychol. 44, 453–495 (1993)CrossRefGoogle Scholar
  145. 57.145.
    A. Baddeley: Human Memory: Theory and Practice (Psychology, UK 1997)Google Scholar
  146. 57.146.
    W. Dodd, R. Gutierrez: The role of episodic memory and emotion in a cognitive robot, Proc. 14th Annu. IEEE Int. Workshop Robot. Hum. Interact. Commun. (RO-MAN) (2005) pp. 692–697Google Scholar
  147. 57.147.
    P. Baxter, W. Browne: Memory as the substrate of cognition: A developmental cognitive robotics perspective, Proc. 10th Int. Conf. Epigenet. Robot. (2010) pp. 19–26Google Scholar
  148. 57.148.
    J.M. Fuster: The Cognit: A network model of cortical representation, Int. J. Psychophysiol. 60, 125–132 (2006)CrossRefGoogle Scholar
  149. 57.149.
    M.M. Mesulam: Attention, confusional states, and neglect. In: Principles of Behavioral and Cognitive Neurology, ed. by M.M. Mesulam (Oxford Univ. Press, New York 2000) pp. 174–256Google Scholar
  150. 57.150.
    J.L. Tsotsos: A Computational Perspective on Visual Attention (MIT Press, Cambridge 2011)CrossRefGoogle Scholar
  151. 57.151.
    L. Paletta, J.L. Tsotsos: Attention in cognitive systems, 5th Int. Workshop Atten. Cognit. Syst., WAPCV 2008 (Springer, Berlin, Heidelberg 2009)Google Scholar
  152. 57.152.
    M. Begum, F. Karray: Visual attention for robotic cognition: A survey, IEEE Trans. Auton. Mental Dev. 3(1), 1–14 (2010)Google Scholar
  153. 57.153.
    S. Frintrop, E. Rome, H.I. Christensen: Computational visual attention systems and their cognitive foundations: A survey, ACM Trans. Appl. Percept. 7(1), 6 (2010)CrossRefGoogle Scholar
  154. 57.154.
    S.N. Wrigley, G.J. Brown: A computational model of auditory selective attention, IEEE Trans. Neural Netw. 15(5), 1151–1163 (2004)CrossRefGoogle Scholar
  155. 57.155.
    S. Lang, M. Kleinehagenbrock, S. Hohenner, J. Fritsch, G.A. Fink, G. Sagerer: Providing the basis for human–robot-interaction: A multi-modal attention system for a mobile robot, Proc. Int. Conf. Multimodal Interfaces (2003)Google Scholar
  156. 57.156.
    S.W. Ban, M. Lee: Biologically motivated visual selective attention for face localization, Proc. 2nd Int. Workshop Atten. Perform. Comput. Vis. (WAPCV 2004), Vol. 3368, ed. by N.L. Paletta, J.K. Tsotsos, E. Rome, G.W. Humphreys (Springer, Berlin, Heidelberg 2004) pp. 196–205Google Scholar
  157. 57.157.
    J.L. Crespo, A. Faiña, R.J. Duro: An adaptive detection/attention mechanism for real time robot operation, Neurocomputing 72, 850–860 (2009)CrossRefGoogle Scholar
  158. 57.158.
    R. Arrabales, A. Ledezma, A. Sanchis: A cognitive approach to multimodal attention, J. Phys. Agents 3(1), 53–64 (2009)Google Scholar
  159. 57.159.
    A. Haasch, N. Hofemann, J. Fritsch, G. Sagerer: A multi-modal object attention system for a mobile robot, IROS 2005 Proc. (2005) pp. 2712–2717Google Scholar
  160. 57.160.
    L.M. Garcia, A.A.F. Oliveira, R.A. Grupen, D.S. Wheeler, A.H. Fagg: Tracing patterns and attention: Humanoid robot cognition, IEEE Intell. Syst. Appl. 15(4), 70–77 (2000)CrossRefGoogle Scholar
  161. 57.161.
    P.J. Burt: Attention mechanisms for vision in a dynamic world, 9th Int. Conf. Pattern Recognit., Vol. 2 (1988) pp. 977–987Google Scholar
  162. 57.162.
    B.J. Baars: A Cognitive Theory of Consciousness (Cambridge Univ. Press, New York 1993)zbMATHGoogle Scholar
  163. 57.163.
    D.C. Dennett: Consciousness Explained (Little, Brown and Co, Boston 1991)Google Scholar
  164. 57.164.
    C. Koch, S. Ullman: Shifts in selective visual attention: Toward the underlying neural circuitry, Hum. Neurobiol. 4, 219–227 (1985)Google Scholar
  165. 57.165.
    L. Itti, C. Koch, E. Niebur: A model of saliency-based visual attention for rapid scene analysis, IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998)CrossRefGoogle Scholar
  166. 57.166.
    S. Frintrop: VOCUS: A visual attention system for object detection and goal-directed search, Lecture Notes in Artificial Intelligence (LNAI), Vol. 3899 (Springer, Berlin, Heidelberg 2006)CrossRefGoogle Scholar
  167. 57.167.
    V. Navalpakkam, L. Itti: Top-down attention selection is fine- grained, J. Vis. 6, 1180–1193 (2006)Google Scholar
  168. 57.168.
    M.R. Heinen, P.M. Engel: Visual selective attention model for robot vision, Latin Am. Robot. Symp. Intell. Robot. Meet. (2008) pp. 29–34Google Scholar
  169. 57.169.
    J.M. Canas, M.M. Casa, T. Gonzalez: An overt visual attention mechanism based on saliency dynamics, Int. J. Intell. Comput. Med. Sci. Image Process 2, 93–100 (2008)Google Scholar
  170. 57.170.
    J. Ruesch, M. Lopes, A. Bernardino, J. Hornstein, J.S. Victor, R. Pfeifer: Multi modal saliency-based bottom-up attention: A framework for the humanoid robot icub, Proc. IEEE Int. Conf. Robot. Autom. (2008) pp. 962–967Google Scholar
  171. 57.171.
    L. Zhang: Vision attention learning model and its application in robot, Proc. 7th Asian Control Conf. (2009) pp. 970–975Google Scholar
  172. 57.172.
    T. Xu, K. Kühnlenz, M. Buss: Autonomous behavior-based switched top-down and bottom-up visual attention for mobile robots, IEEE Trans. Robot. 26(5), 947–954 (2010)CrossRefGoogle Scholar
  173. 57.173.
    Y. Sun, R. Fisher: Object-based visual attention for computer vision, Artif. Intell. 146, 77–123 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  174. 57.174.
    T. Wu, J. Gao, Q. Zhao: A computational model of object-based selective visual attention mechanism in visual information acquisition, Proc. IEEE Conf. Inform. Acquis. (2004) pp. 405–409Google Scholar
  175. 57.175.
    Y. Yu, G.K. Mann, R.G. Gosine: A novel robotic visual perception method using object-based attention, Proc. 2009 IEEE Int. Conf. Robot. Biomim. (2009)Google Scholar
  176. 57.176.
    M. Begum, G. Mann, R. Gosine, F. Karray: Object and space-based visual attention: An integrated framework for autonomous robots, Proc. IEEE/RSJ Int. Conf. Intell. Robotic Syst., Nice (2008) pp. 301–306Google Scholar
  177. 57.177.
    L.J. Lanyon, S.L. Denham: A model of active visual search with object-based attention guiding scan paths, Neural Netw. 17, 873–897 (2004)zbMATHCrossRefGoogle Scholar
  178. 57.178.
    B. Mertsching, M. Bollmann, R. Hoischen, S. Schmalz: The neural active vision system NAVIS. In: Handbook of Computer Vision and Applications, Vol. 3, ed. by B. Jähne, H. Haussecke, P. Geissler (Academic, San Diego 1999) pp. 543–568Google Scholar
  179. 57.179.
    M. Bollmann, R. Hoischen, M. Jesikiewicz, C. Justkowski, B. Mertsching: Playing domino: A case study for an active vision system. In: Computer Vision Systems, ed. by H. Christensen (Springer, New York 1999) pp. 392–411CrossRefGoogle Scholar
  180. 57.180.
    S. Vijayakumar, J. Conradt, T. Shibata, S. Schaal: Overt visual attention for a humanoid robot, Proc. Int. Conf. Intell. Robot. Auton. Syst. (IROS 2001) (2001) pp. 2332–2337Google Scholar
  181. 57.181.
    A. Dankers, N. Barnes, A. Zelinsky: A reactive vision system: Active-dynamic saliency, Proc. 5th Int. Conf. Comput. Vis. Syst. (ICVS 2007) (2007)Google Scholar
  182. 57.182.
    S. Jeong, M. Lee, H. Arie, J. Tani: Developmental learning of integrating visual attention shifts and bimanual object grasping and manipulation tasks, Proc. IEEE 9th Int. Conf. Dev. Learn. (ICDL2010) (2010) pp. 165–170Google Scholar
  183. 57.183.
    J.J. Clark, N.J. Ferrier: Modal control of an attentive vision system, Proc. 2nd Int. Conf. Comput. Vis. (Tampa, Florida, US 1988)Google Scholar
  184. 57.184.
    C. Breazeal: A context-dependent attention system for a social robot, Proc. Int. Jt. Conf. Artif. Intell. (IJCAI 99) (Stockholm 1999) pp. 1146–1151Google Scholar
  185. 57.185.
    Y. Nagai: From bottom-up visual attention to robot action learning, IEEE 8th Int. Conf. Dev. Learn. (2009)Google Scholar
  186. 57.186.
    B.R. Cox, J.L. Krichmar: Neuromodulation as a robot controller: A brain inspired design strategy for controlling autonomous robots, IEEE Rob. Autom. Mag. 16(3), 72–80 (2009)CrossRefGoogle Scholar
  187. 57.187.
    J. Garforth, S.L. McHale, A. Meehan: Executive attention, task selection and attention-based learning in a neurally controlled simulated robot, Neurocomputing 69(16–18), 1923–1945 (2006)CrossRefGoogle Scholar
  188. 57.188.
    W.H. Alexander, O. Sporns: An embodied model of learning, plasticity, and reward, Adapt. Behav. 10, 143–159 (2002)CrossRefGoogle Scholar
  189. 57.189.
    T.J. Prescott, F.M. Montes Gonzalez, K. Gurney, M.D. Humphries, P. Redgrave: A robot model of the basal ganglia: Behavior and intrinsic processing, Neural Netw. 19, 31–61 (2006)zbMATHCrossRefGoogle Scholar
  190. 57.190.
    D. Sperber, D. Wilson: Relevance: Communication and Cognition (Blakwell, Oxford 1986)Google Scholar
  191. 57.191.
    R.R. Cornelius: The Science of Emotion: Research and Tradition in the Psychology of Emotions (Prentice-Hall, Inc, Englewood Cliffs, NJ, US 1996)Google Scholar
  192. 57.192.
    R. Buck: The Communication of Emotion (Guilford, New York 1984)Google Scholar
  193. 57.193.
    D. Keltner, J. Haidt: Social functions of emotions. In: Emotions: Current Issues and Future Directions, ed. by T.J. Mayne, G.A. Bonanno (Guilford, New York 2001) pp. 192–213Google Scholar
  194. 57.194.
    D. Keltner, A.M. Kring: Emotion, social function, and psychopathology, Rev. Gen. Psychol. 2(3), 320–342 (1998)CrossRefGoogle Scholar
  195. 57.195.
    M. Ridley: The Origins of Virtue (Penguin, London 1997)Google Scholar
  196. 57.196.
    M.W. Eysenck: Psychology: An Integrated Approach (Longman, Harlow, Essex 1998)Google Scholar
  197. 57.197.
    L. Cosmides, J. Tooby: Evolutionary psychology and the emotions. In: Handbook of Emotions, Vol. 7, 2nd edn., ed. by M. Lewis, J.M. Haviland-Jones (Wiley, Chichester 2000) pp. 91–115Google Scholar
  198. 57.198.
    D. Matsui, T. Minato, K.F. MacDorman, H. Ishiguro: Generating natural motion in an android by mapping human motion, IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS) (2005) pp. 3301–3308Google Scholar
  199. 57.199.
    H. Miwa, T. Okuchi, K. Itoh, H. Takanobu, A. Takanishi: A new mental model for humanoid robots for human friendly communication introduction of learning system, mood vector and second order equations of emotion, IEEE Int. Conf. Robot. Autom. (ICRA), Vol. 3 (2003) pp. 3588–3593Google Scholar
  200. 57.200.
    H. Miwa, K. Itoh, M. Matsumoto, M. Zecca, H. Takanobu, S. Rocella, M.C. Carrozza, P. Dario, A. Takanishi: Effective emotional expressions with expression humanoid robot WE-4RII: Integration of humanoid robot hand RCH-1, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Vol. 3 (2004) pp. 2203–2208Google Scholar
  201. 57.201.
    T. Hashimoto, S. Hitramatsu, T. Tsuji, H. Kobayashi: Development of the face robot SAYA for rich facial expressions, Int. Jt. Conf. SICE-ICASE (2006) pp. 5423–5428Google Scholar
  202. 57.202.
    L. Canamero, J. Fredslund: I show you how I like you – can you read it in my face?, IEEE Trans. Syst. Man Cyber. A 31(5), 454–459 (2001)CrossRefGoogle Scholar
  203. 57.203.
    C. Breazeal: Toward sociable robots, Robot. Auton. Syst. 42(3), 167–175 (2003)zbMATHCrossRefGoogle Scholar
  204. 57.204.
    C. Breazeal, D. Buchsbaum, J. Gray, D. Gatenby, B. Blumberg: Learning from and about others: Towards using imitation to bootstrap the social understanding of others by robots, Artif. Life 11(1), 31–62 (2005)CrossRefGoogle Scholar
  205. 57.205.
    H. Kobayashi, Y. Ichikawa, M. Senda, T. Shiiba: Realization of realistic and rich facial expressions by face robot, IEEE/RSJ Int. Conf. Intell. Rob. Syst. (IROS), Vol. 2 (2003) pp. 1123–1128Google Scholar
  206. 57.206.
    A. Watanabe, M. Ogino, M. Asada: Mapping facial expression to internal states based on intuitive parenting, J. Robot. Mechatron 19(3), 315–323 (2007)Google Scholar
  207. 57.207.
    D. Lee, H.S. Ahn, J.Y. Choi: A general behavior generation module for emotional robots using unit behavior combination method, The 18th IEEE Int. Symp. Robot Hum. Interact. Commun. (RO-MAN) (2009) pp. 375–380Google Scholar
  208. 57.208.
    M.-J. Han, C.-H. Lin, K.-T. Song: Autonomous emotional expression generation of a robotic face, IEEE Int. Conf. Syst., Man and Cybern. (SMC) (2009) pp. 2427–2432Google Scholar
  209. 57.209.
    E.T. Rolls: On The brain and emotion, Behav. Brain Sci. 23(2), 219–228 (2000)CrossRefGoogle Scholar
  210. 57.210.
    R.W. Levenson: Blood, sweat, and fears: The autonomic architecture of emotion, Annu. New York Acad. Sci. 1000, 348–366 (2003)CrossRefGoogle Scholar
  211. 57.211.
    A. Ortony, D.A. Norman, W. Revelle: Affect and proto-affect in effective functioning. In: Who Needs Emotions: The Brain Meets the Machine, ed. by J.M. Fellous, M.A. Arbib (Oxford Univ., New York 2005)Google Scholar
  212. 57.212.
    M.A. Arbib: Beware the passionate robot. In: Who Needs Emotions? The Brain Meets the Machine, ed. by J.M. Fellous, M.A. Arbib (Oxford Univ., New York 2005)Google Scholar
  213. 57.213.
    R.C. Arkin, K. Ali, A. Weitzenfeld, F. Cervantes-Pèrez: Behavioral models of the praying mantis as a basis for robotic behavior, Robot. Auton. Syst. 32(1), 39–60 (2000)CrossRefGoogle Scholar
  214. 57.214.
    M. Ogino, T. Ooide, A. Watanabe, M. Asada: Acquiring peekaboo communication: Early communication model based on reward prediction, IEEE 6th Int. Conf. Dev. Learn. (ICDL) (2007) pp. 116–121Google Scholar
  215. 57.215.
    R. Paz, J.G. Pelletier, E.P. Bauer, D. Paré: Emotional enhancement of memory via amygdala-driven facilitation of rhinal interactions, Nat. Neurosci. 9(10), 1321–1329 (2006)CrossRefGoogle Scholar
  216. 57.216.
    J.L. McGaugh: Memory and Emotion (Orion, London 2003)Google Scholar
  217. 57.217.
    W. Schultz, P. Dayan, P.R. Montague: A neural substrate of prediction and reward, Science 275(5306), 1593–1599 (1997)CrossRefGoogle Scholar
  218. 57.218.
    P. Rochat, J.G. Querido, T. Striano: Emerging sensitivity to the timing and structure of protoconversation in early infancy, Dev. Psychol. 35(4), 950–957 (1999)CrossRefGoogle Scholar
  219. 57.219.
    N.A. Mirza, C.L. Nehaniv, K. Dautenhahn, R. Te Boekhorst: Grounded sensorimotor interaction histories. In an information theoretic metric space for robot ontogeny, Adapt. Behav. 15, 167–187 (2007)CrossRefGoogle Scholar
  220. 57.220.
    N.A. Mirza, C.L. Nehaniv, K. Dautenhahn, R. te Boekhorst: Developing social action capabilities in a humanoid robot using an interaction history architecture, 8th IEEE-RAS Int. Conf. Humanoid Robots (2008) pp. 609–616Google Scholar
  221. 57.221.
    J.-A. Meyer, A. Guillot, B. Girard, M. Khamassi, P. Pirim, A. Berthoz: The Psikharpax project: Towards building an artificial rat, Robot. Auton. Syst. 50(4), 211–223 (2005)CrossRefGoogle Scholar
  222. 57.222.
    H.L. Dreyfus: What Computers Still Canʼt Do: A Critique of Artificial Reason (MIT, Cambridge, USA 1992)Google Scholar
  223. 57.223.
    R.A. Brooks: Cambrian Intelligence: The Early History of the New AI (MIT, Cambridge, USA 1999)zbMATHGoogle Scholar
  224. 57.224.
    M.P. Michalowski, S. Sabanovic, P. Michel: Roillo: Creating a social robot for playrooms, 15th IEEE Int. Symp. Robot Hum. Interact. Commun. (ROMAN) (2006) pp. 587–592Google Scholar
  225. 57.225.
    Project SERA (Social Engagement with Robots and Agents): (last accessed 5 May 2013)
  226. 57.226.
    UK Computing Research Committee (Grand Challenges in Computer Research): (last accessed 5 May 2013)
  227. 57.227.
    UK Computing Research Committee (Grand Challenge 5 Architecture of Brain and Mind), (last accessed 5 May 2013)
  228. 57.228.
    Seventh Framework Programme (FP7), Information and Communication Technologies Challenge 2: Cognitive Systems and Robotics, (last accessed 5 May 2013)
  229. 57.229.
    RobotCub – An Open Framework for Research in Embodied Cognition, (last accessed 5 May 2013)
  230. 57.230.
    iCub – An Open Source Cognitive Humanoid Robotic Platform, (last accessed 5 May 2013)
  231. 57.231.
    N.G. Tsagarakis: iCub: The design and realization of an open humanoid platform for cognitive and neuroscience research, Adv. Robot. 21(10), 1151–1175 (2007)CrossRefGoogle Scholar
  232. 57.232.
    G. Sandini, G. Metta, D. Vernon: The iCub cognitive humanoid robot: An open-system research platform for enactive cognition. In: 50 Years of Artificial Intelligence, Vol. 4850, ed. by M. Lungarella, F. Iida, J. Bongard, R. Pfeifer (Springer, Berlin, Heidelberg 2007) pp. 358–369CrossRefGoogle Scholar
  233. 57.233.
    MACSi – Motor Affective Cognitive Scaffolding for the iCub, (last accessed 5 May 2013)
  234. 57.234.
    Darwin Project – Dexterous Assembler Robot Working with embodied Intellience, (last accessed 5 May 2013)Google Scholar
  235. 57.235.
    ITALK – Integration and Transfer of Action and Language Knowledge in Robots, (last accessed 5 May 2013)
  236. 57.236.
    IM-CLeVeR – Intrinsically Motivated Cumulative Learning Versatile Robots, (last accessed 5 May 2013)
  237. 57.237.
    EFAA – Experimental Functional Android Assistant, (last accessed 5 May 2013)
  238. 57.238.
    CHRIS – Cooperative Human Robot Interaction Systems, (last accessed 5 May 2013)
  239. 57.239.
    ROSSI – Emergence of communication in RObots through Sensorimotor and Social Interaction, (last accessed 5 May 2013)
  240. 57.240.
    Feelix Growing Project, (last access date 07/28/2011)
  241. 57.241.
    RoboCup, (last accessed 5 May 2013)
  242. 57.242.
    BabyBot Humanoid, LIRA Lab, (last accessed 5 May 2013)
  243. 57.243.
    T. Minato, Y. Yoshikawa, T. Noda, S. Ikemoto, H. Ishiguro, M. Asada: CB2: A child robot with biomimetic body for cognitive developmental robotics, 7th IEEE-RAS Int. Conf. Humanoid Robots (2007) pp. 557–562Google Scholar
  244. 57.244.
    T. Minato, F. DallaLibera, S. Yokokawa, Y. Nakamura, H. Ishiguro, E. Menegatti: A baby robot platform for cognitive developmental robotics, Workshop Synerg. Intell. 2009 IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2009)Google Scholar
  245. 57.245.
    The Acroban Humanoid Project, INRIA Ensta-ParisTech research team on developmental and social robotics, (last accessed 5 May 2013)
  246. 57.246.
    NAO Humanoid Robot, Aldebaran Robotics, (last accessed 5 May 2013)

Copyright information

© Springer-Verlag 2014

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversidade da CoruñaFerrolSpain
  2. 2.Escola Politecnica Superior, Department of Computer ScienceUniversidade da CoruñaFerrolSpain
  3. 3.Department of Computer ScienceUniversity of A CoruñaFerrolSpain

Personalised recommendations