Integrating Data for Modeling Biological Complexity

  • Sally Hunter
  • Carol Brayne


This chapter describes how information relating to the interactions between molecules in complex biological pathways can be identified from the scientific literature and integrated into maps of functional relationships. The molecular biology of the amyloid precursor protein (APP) in the synaptic processes involved in normal cognitive function and neurodegenerative disease is used as a case study. The maps produced are interpreted with reference to basic concepts of biological regulation and control. Direct and indirect feedback relationships between the amyloid precursor protein, its proteolytic fragments and various processes that contribute to processes involved in synaptic modifications are identified. The contributions of the amyloid precursor protein and its proteolytic fragments are investigated with reference to disease pathways in Alzheimer disease and new perspectives on disease progression are highlighted. Mapping functional relationships in complex biological pathways is useful to summarize the current knowledge base, identify further targets for research, and for empirical experimental design and interpretation of results.


Synaptic Plasticity Amyloid Precursor Protein Cholesterol Homeostasis Amyloid Precursor Protein Processing Proteolytic Fragment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



muscarinic acetylcholine




Alzheimerʼs disease


a disintegrin and metalloproteinase


intracellular domain of APP


α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid


amyloid precursor protein


β-site APP cleaving enzyme


carboxy-terminal fragment


extracellular matrix


familial AD


lipoprotein receptor-related protein


long-term depression


long-term potentiation


matrix metalloproteinase


medical subject heading






sporadic AD


nicotinic acetylcholine receptor


  1. 52.1.
    T. Miyashita, S. Kubik, G. Lewandowski, J.F. Guzowski: Networks of neurons, networks of genes: An integrated view of memory consolidation, Neurobiol. Learn. Mem. 89(3), 269–284 (2008)CrossRefGoogle Scholar
  2. 52.2.
    R.G. Morris, E.I. Moser, G. Riedel, S.J. Martin, J. Sandin, M. Day, C. OʼCarroll: Elements of a neurobiological theory of the hippocampus: The role of activity-dependent synaptic plasticity in memory, Philos. Trans. R. Soc. Lond. B 358(1432), 773–786 (2003)CrossRefGoogle Scholar
  3. 52.3.
    D.J. Selkoe: Normal and abnormal biology of the β-amyloid precursor protein, Annu. Rev. Neurosci. 17, 489–517 (1994)CrossRefGoogle Scholar
  4. 52.4.
    J.C. Morris, A. Heyman, R.C. Mohs, J.P. Hughes, G. van Belle, G. Fillenbaum, E.D. Mellits, C. Clark: The Consortium to Establish a Registry for Alzheimerʼs Disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimerʼs disease, Neurology 39(9), 1159–1165 (1989)CrossRefGoogle Scholar
  5. 52.5.
    H. Braak, E. Braak: Neuropathological stageing of Alzheimer-related changes, Acta Neuropathol. 82(4), 239–259 (1991)CrossRefGoogle Scholar
  6. 52.6.
    H. Braak, E. Braak: Diagnostic criteria for neuropathologic assessment of Alzheimerʼs disease, Neurobiol. Aging 18(4 Suppl), S85–88 (1997)CrossRefGoogle Scholar
  7. 52.7.
    S.S. Mirra, A. Heyman, D. McKeel, S.M. Sumi, B.J. Crain, L.M. Brownlee, F.S. Vogel, J.P. Hughes, G. van Belle, L. Berg: The Consortium to Establish a Registry for Alzheimerʼs Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimerʼs disease, Neurology 41(4), 479–486 (1991)CrossRefGoogle Scholar
  8. 52.8.
    D.J. Selkoe: Physiological production of the beta-amyloid protein and the mechanism of Alzheimerʼs disease, Trends Neurosci. 16(10), 403–409 (1993)CrossRefGoogle Scholar
  9. 52.9.
    A.R. Koudinov, N.V. Koudinova: Cholesterol homeostasis failure as a unifying cause of synaptic degeneration, J. Neurol. Sci. 229–230, 233–240 (2005)CrossRefGoogle Scholar
  10. 52.10.
    J. Poirier: Apolipoprotein E and cholesterol metabolism in the pathogenesis and treatment of Alzheimerʼs disease, Trends Mol. Med. 9(3), 94–101 (2003)MathSciNetCrossRefGoogle Scholar
  11. 52.11.
    L. Puglielli, R.E. Tanzi, D.M. Kovacs: Alzheimerʼs disease: The cholesterol connection, Nat. Neurosci. 6(4), 345–351 (2003)CrossRefGoogle Scholar
  12. 52.12.
    M.P. Mattson: Calcium and neurodegeneration, Aging Cell 6(3), 337–350 (2007)CrossRefGoogle Scholar
  13. 52.13.
    G. Perry, M.A. Taddeo, A. Nunomura, X. Zhu, T. Zenteno-Savin, K.L. Drew, S. Shimohama, J. Avila, R.J. Castellani, M.A. Smith: Comparative biology and pathology of oxidative stress in Alzheimer and other neurodegenerative diseases: Beyond damage and response, Comp. Biochem. Physiol. C Toxicol Pharmacol. 133(4), 507–513 (2002)CrossRefGoogle Scholar
  14. 52.14.
    M.P. Mattson: Oxidative stress, perturbed calcium homeostasis, and immune dysfunction in Alzheimerʼs disease, J. NeuroVirol. 8(6), 539–550 (2002)CrossRefGoogle Scholar
  15. 52.15.
    T. Arendt: Synaptic plasticity and cell cycle activation in neurons are alternative effector pathways: The `Dr. Jekyll and Mr. Hyde conceptʼ of Alzheimerʼs disease or the yin and yang of neuroplasticity, Prog. Neurobiol. 71(2–3), 83–248 (2003)CrossRefGoogle Scholar
  16. 52.16.
    T. Arendt, M.K. Bruckner: Linking cell-cycle dysfunction in Alzheimerʼs disease to a failure of synaptic plasticity, Biochim. Biophys. Acta 1772(4), 413–421 (2007)CrossRefGoogle Scholar
  17. 52.17.
    J.A. Hardy, G.A. Higgins: Alzheimerʼs disease: The amyloid cascade hypothesis, Science 256(5054), 184–185 (1992)CrossRefGoogle Scholar
  18. 52.18.
    MRC CFAS: Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales. Neuropathology Group of the Medical Research Council Cognitive Function and Ageing Study (MRC CFAS), Lancet 357(9251), 169–175 (2001)CrossRefGoogle Scholar
  19. 52.19.
    G.M. Savva, S.B. Wharton, P.G. Ince, G. Forster, F.E. Matthews, C. Brayne: Age, neuropathology, and dementia, N. Engl. J. Med. 360(22), 2302–2309 (2009)CrossRefGoogle Scholar
  20. 52.20.
    S. Hunter, R.P. Friedland, C. Brayne: Time for a change in the research paradigm for Alzheimerʼs disease: The value of a chaotic matrix modeling approach, CNS Neurosci. Ther. 16(4), 254–262 (2010)CrossRefGoogle Scholar
  21. 52.21.
    A.I. Bush, W.H. Pettingell Jr., M. de Paradis, R.E. Tanzi, W. Wasco: The amyloid beta-protein precursor and its mammalian homologues. Evidence for a zinc-modulated heparin-binding superfamily, J. Biol. Chem. 269(43), 26618–26621 (1994)Google Scholar
  22. 52.22.
    P.R. Turner, K. OʼConnor, W.P. Tate, W.C. Abraham: Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory, Prog. Neurobiol. 70(1), 1–32 (2003)CrossRefGoogle Scholar
  23. 52.23.
    R.G. Perez, S. Soriano, J.D. Hayes, B. Ostaszewski, W. Xia, D.J. Selkoe, X. Chen, G.B. Stokin, E.H. Koo: Mutagenesis identifies new signals for beta-amyloid precursor protein endocytosis, turnover, and the generation of secreted fragments, including Abeta42, J. Biol. Chem. 274(27), 18851–18856 (1999)CrossRefGoogle Scholar
  24. 52.24.
    C.U. Pietrzik, T. Busse, D.E. Merriam, S. Weggen, E.H. Koo: The cytoplasmic domain of the LDL receptor-related protein regulates multiple steps in APP processing, EMBO J. 21(21), 5691–5700 (2002)CrossRefGoogle Scholar
  25. 52.25.
    E.H. Koo, S.L. Squazzo, D.J. Selkoe, C.H. Koo: Trafficking of cell-surface amyloid beta-protein precursor. I. Secretion, endocytosis and recycling as detected by labeled monoclonal antibody, J. Cell Sci. 109(Pt 5), 991–998 (1996)Google Scholar
  26. 52.26.
    M.J. Savage, S.P. Trusko, D.S. Howland, L.R. Pinsker, S. Mistretta, A.G. Reaume, B.D. Greenberg, R. Siman, R.W. Scott: Turnover of amyloid beta-protein in mouse brain and acute reduction of its level by phorbol ester, J. Neurosci. 18(5), 1743–1752 (1998)Google Scholar
  27. 52.27.
    A.W. Lyckman, A.M. Confaloni, G. Thinakaran, S.S. Sisodia, K.L. Moya: Post-translational processing and turnover kinetics of presynaptically targeted amyloid precursor superfamily proteins in the central nervous system, J. Biol. Chem. 273(18), 11100–11106 (1998)CrossRefGoogle Scholar
  28. 52.28.
    J. Morales-Corraliza, M.J. Mazzella, J.D. Berger, N.S. Diaz, J.H. Choi, E. Levy, Y. Matsuoka, E. Planel, P.M. Mathews: In vivo turnover of tau and APP metabolites in the brains of wild-type and Tg2576 mice: Greater stability of sAPP in the Beta-amyloid depositing mice, PLoS ONE 4(9), e7134 (2009)CrossRefGoogle Scholar
  29. 52.29.
    H. Zheng, M. Jiang, M.E. Trumbauer, D.J. Sirinathsinghji, R. Hopkins, D.W. Smith, R.P. Heavens, G.R. Dawson, S. Boyce, M.W. Conner, K.A. Stevens, H.H. Slunt, S.S. Sisoda, H.Y. Chen, L.H. Van der Ploeg: β-Amyloid precursor protein-deficient mice show reactive gliosis and decreased locomotor activity, Cell 81(4), 525–531 (1995)CrossRefGoogle Scholar
  30. 52.30.
    J.P. Steinbach, U. Muller, M. Leist, Z.W. Li, P. Nicotera, A. Aguzzi: Hypersensitivity to seizures in beta-amyloid precursor protein deficient mie, Cell Death Differ. 5(10), 858–866 (1998)CrossRefGoogle Scholar
  31. 52.31.
    C.S. von Koch, H. Zheng, H. Chen, M. Trumbauer, G. Thinakaran, L.H. van der Ploeg, D.L. Price, S.S. Sisodia: Generation of APLP2 KO mice and early postnatal lethality in APLP2/APP double KO mice, Neurobiol. Aging 18(6), 661–669 (1997)CrossRefGoogle Scholar
  32. 52.32.
    N. Gakhar-Koppole, P. Hundeshagen, C. Mandl, S.W. Weyer, B. Allinquant, U. Muller, F. Ciccolini: Activity requires soluble amyloid precursor protein alpha to promote neurite outgrowth in neural stem cell-derived neurons via activation of the MAPK pathway, Eur. J. Neurosci. 28(5), 871–882 (2008)CrossRefGoogle Scholar
  33. 52.33.
    S. Heber, J. Herms, V. Gajic, J. Hainfellner, A. Aguzzi, T. Rulicke, H. von Kretzschmar, C. von Koch, S.S. Sisodia, P. Tremml, H.P. Lipp, D.P. Wolfer, U. Muller: Mice with combined gene knock-outs reveal essential and partially redundant functions of amyloid precursor protein family members, J. Neurosci. 20(21), 7951–7963 (2000)Google Scholar
  34. 52.34.
    G. Stoll, S. Jander, M. Schroeter: Detrimental and beneficial effects of injury-induced inflammation and cytokine expression in the nervous system, Adv. Exp. Med. Biol. 513, 87–113 (2002)Google Scholar
  35. 52.35.
    M. Pickering, J.J. OʼConnor: Pro-inflammatory cytokines and their effects in the dentate gyrus, Prog. Brain Res. 163, 339–354 (2007)CrossRefGoogle Scholar
  36. 52.36.
    C.W. Cotman, N.P. Hailer, K.K. Pfister, I. Soltesz, M. Schachner: Cell adhesion molecules in neural plasticity and pathology: Similar mechanisms, distinct organizations?, Prog. Neurobiol. 55(6), 659–669 (1998)CrossRefGoogle Scholar
  37. 52.37.
    G.J. Ho, R. Drego, E. Hakimian, E. Masliah: Mechanisms of cell signaling and inflammation in Alzheimerʼs disease, Curr. Drug Targets Inflamm. Allergy 4(2), 247–256 (2005)CrossRefGoogle Scholar
  38. 52.38.
    J. Caltagarone, Z. Jing, R. Bowser: Focal adhesions regulate Abeta signaling and cell death in Alzheimerʼs disease, Biochim. Biophys. Acta 1772(4), 438–445 (2007)CrossRefGoogle Scholar
  39. 52.39.
    C. Guardia-Laguarta, M. Coma, M. Pera, J. Clarimon, L. Sereno, J.M. Agullo, L. Molina-Porcel, E. Gallardo, A. Deng, O. Berezovska, B.T. Hyman, R. Blesa, T. Gomez-Isla, A. Lleo: Mild cholesterol depletion reduces amyloid-beta production by impairing APP trafficking to the cell surface, J. Neurochem. 110(1), 220–230 (2009)CrossRefGoogle Scholar
  40. 52.40.
    S. Gandy, Y.W. Zhang, A. Ikin, S.D. Schmidt, A. Bogush, E. Levy, R. Sheffield, R.A. Nixon, F.F. Liao, P.M. Mathews, H. Xu, M.E. Ehrlich: Alzheimerʼs presenilin 1 modulates sorting of APP and its carboxyl-terminal fragments in cerebral neurons in vivo, J. Neurochem. 102(3), 619–626 (2007)CrossRefGoogle Scholar
  41. 52.41.
    H.S. Hoe, K.J. Lee, R.S. Carney, J. Lee, A. Markova, J.Y. Lee, B.W. Howell, B.T. Hyman, D.T. Pak, G. Bu, G.W. Rebeck: Interaction of reelin with amyloid precursor protein promotes neurite outgrowth, J. Neurosci. 29(23), 7459–7473 (2009)CrossRefGoogle Scholar
  42. 52.42.
    H.S. Hoe, T.S. Tran, Y. Matsuoka, B.W. Howell, G.W. Rebeck: DAB1 and Reelin effects on amyloid precursor protein and ApoE receptor 2 trafficking and processing, J. Biol. Chem. 281(46), 35176–35185 (2006)CrossRefGoogle Scholar
  43. 52.43.
    J.G. Sheng, K. Ito, R.D. Skinner, R.E. Mrak, C.R. Rovnaghi, L.J. Van Eldik, W.S. Griffin: In vivo and in vitro evidence supporting a role for the inflammatory cytokine interleukin-1 as a driving force in Alzheimer pathogenesis, Neurobiol. Aging 17(5), 761–766 (1996)CrossRefGoogle Scholar
  44. 52.44.
    K.A. Chang, S.H. Kim, Y. Sakaki, H.S. Kim, C.W. Park, Y.H. Suh: Inhibition of the NGF and IL-1beta-induced expression of Alzheimerʼs amyloid precursor protein by antisense oligonucleotides, J. Mol. Neurosci. 12(1), 69–74 (1999)CrossRefGoogle Scholar
  45. 52.45.
    M.P. Marzolo, G. Bu: Lipoprotein receptors and cholesterol in APP trafficking and proteolytic processing, implications for Alzheimerʼs disease, Semin. Cell Dev. Biol. 20(2), 191–200 (2009)CrossRefGoogle Scholar
  46. 52.46.
    E. Waldron, C. Heilig, A. Schweitzer, N. Nadella, S. Jaeger, A.M. Martin, S. Weggen, K. Brix, C.U. Pietrzik: LRP1 modulates APP trafficking along early compartments of the secretory pathway, Neurobiol. Dis. 31(2), 188–197 (2008)CrossRefGoogle Scholar
  47. 52.47.
    A.R. White, F. Maher, M.W. Brazier, M.F. Jobling, J. Thyer, L.R. Stewart, A. Thompson, R. Gibson, C.L. Masters, G. Multhaup, K. Beyreuther, C.J. Barrow, S.J. Collins, R. Cappai: Diverse fibrillar peptides directly bind the Alzheimerʼs amyloid precursor protein and amyloid precursor-like protein 2 resulting in cellular accumulation, Brain Res. 966(2), 231–244 (2003)CrossRefGoogle Scholar
  48. 52.48.
    I.Y. Tamboli, K. Prager, E. Barth, M. Heneka, K. Sandhoff, J. Walter: Inhibition of glycosphingolipid biosynthesis reduces secretion of the beta-amyloid precursor protein and amyloid beta-peptide, J. Biol. Chem. 280(30), 28110–28117 (2005)CrossRefGoogle Scholar
  49. 52.49.
    G.H. Tansley, B.L. Burgess, M.T. Bryan, Y. Su, V. Hirsch-Reinshagen, J. Pearce, J.Y. Chan, A. Wilkinson, J. Evans, K.E. Naus, S. McIsaac, K. Bromley, W. Song, H.C. Yang, N. Wang, R.B. DeMattos, C.L. Wellington: The cholesterol transporter ABCG1 modulates the subcellular distribution and proteolytic processing of beta-amyloid precursor protein, J. Lipid Res. 48(5), 1022–1034 (2007)CrossRefGoogle Scholar
  50. 52.50.
    C.V. Zerbinatti, J.M. Cordy, C.D. Chen, M. Guillily, S. Suon, W.J. Ray, G.R. Seabrook, C.R. Abraham, B. Wolozin: Oxysterol-binding protein-1 (OSBP1) modulates processing and trafficking of the amyloid precursor protein, Mol. Neurodegener. 3, 5 (2008)CrossRefGoogle Scholar
  51. 52.51.
    L. Gasparini, G.K. Gouras, R. Wang, R.S. Gross, M.F. Beal, P. Greengard, H. Xu: Stimulation of beta-amyloid precursor protein trafficking by insulin reduces intraneuronal beta-amyloid and requires mitogen-activated protein kinase signaling, J. Neurosci. 21(8), 2561–2570 (2001)Google Scholar
  52. 52.52.
    X. Ling, R.N. Martins, M. Racchi, S. Craft, E. Helmerhorst: Amyloid beta antagonizes insulin promoted secretion of the amyloid beta protein precursor, J. Alzheimers Dis. 4(5), 369–374 (2002)Google Scholar
  53. 52.53.
    D.W. Shineman, A.S. Dain, M.L. Kim, V.M. Lee: Constitutively active Akt inhibits trafficking of amyloid precursor protein and amyloid precursor protein metabolites through feedback inhibition of phosphoinositide 3-kinase, Biochemistry 48(17), 3787–3794 (2009)CrossRefGoogle Scholar
  54. 52.54.
    K.S. Vetrivel, P. Gong, J.W. Bowen, H. Cheng, Y. Chen, M. Carter, P.D. Nguyen, L. Placanica, F.T. Wieland, Y.M. Li, M.Z. Kounnas, G. Thinakaran: Dual roles of the transmembrane protein p23/TMP21 in the modulation of amyloid precursor protein metabolism, Mol. Neurodegener. 2, 4 (2007)CrossRefGoogle Scholar
  55. 52.55.
    Y. Ruiz-Leon, A. Pascual: Regulation of beta-amyloid precursor protein expression by brain-derived neurotrophic factor involves activation of both the Ras and phosphatidylinositide 3-kinase signalling pathways, J. Neurochem. 88(4), 1010–1018 (2004)CrossRefGoogle Scholar
  56. 52.56.
    L. Tong, R. Balazs, P.L. Thornton, C.W. Cotman: Beta-amyloid peptide at sublethal concentrations downregulates brain-derived neurotrophic factor functions in cultured cortical neurons, J. Neurosci. 24(30), 6799–6809 (2004)CrossRefGoogle Scholar
  57. 52.57.
    J.M. Cosgaya, M.J. Latasa, A. Pascual: Nerve growth factor and ras regulate beta-amyloid precursor protein gene expression in PC12 cells, J. Neurochem. 67(1), 98–104 (1996)CrossRefGoogle Scholar
  58. 52.58.
    S.S. Mok, G. Sberna, D. Heffernan, R. Cappai, D. Galatis, H.J. Clarris, W.H. Sawyer, K. Beyreuther, C.L. Masters, D.H. Small: Expression and analysis of heparin-binding regions of the amyloid precursor protein of Alzheimerʼs disease, FEBS Lett. 415(3), 303–307 (1997)CrossRefGoogle Scholar
  59. 52.59.
    G.W. Rebeck, R.D. Moir, S. Mui, D.K. Strickland, R.E. Tanzi, B.T. Hyman: Association of membrane-bound amyloid precursor protein APP with the apolipoprotein E receptor LRP, Brain Res. Mol. Brain Res. 87(2), 238–245 (2001)CrossRefGoogle Scholar
  60. 52.60.
    M.S. Durakoglugil, Y. Chen, C.L. White, E.T. Kavalali, J. Herz: Reelin signaling antagonizes beta-amyloid at the synapse, Proc. Natl. Acad. Sci. USA 106(37), 15938–15943 (2009)CrossRefGoogle Scholar
  61. 52.61.
    S. Matsuda, Y. Matsuda, L. DʼAdamio: CD74 interacts with APP and suppresses the production of Abeta, Mol. Neurodegener. 4, 41 (2009)CrossRefGoogle Scholar
  62. 52.62.
    UniProt: P04233, available online at
  63. 52.63.
    G.M. Shaked, S. Chauv, K. Ubhi, L.A. Hansen, E. Masliah: Interactions between the amyloid precursor protein C-terminal domain and G proteins mediate calcium dysregulation and amyloid beta toxicity in Alzheimerʼs disease, FEBS J. 276(10), 2736–2751 (2009)CrossRefGoogle Scholar
  64. 52.64.
    I. Nishimoto, T. Okamoto, Y. Matsuura, S. Takahashi, Y. Murayama, E. Ogata: Alzheimer amyloid protein precursor complexes with brain GTP-binding protein G(o), Nature 362(6415), 75–79 (1993)CrossRefGoogle Scholar
  65. 52.65.
    T. Okamoto, S. Takeda, Y. Murayama, E. Ogata, I. Nishimoto: Ligand-dependent G protein coupling function of amyloid transmembrane precursor, J. Biol. Chem. 270(9), 4205–4208 (1995)CrossRefGoogle Scholar
  66. 52.66.
    S.L. Sabo, A.F. Ikin, J.D. Buxbaum, P. Greengard: The Alzheimer amyloid precursor protein (APP) and FE65, an APP-binding protein, regulate cell movement, J. Cell Biol. 153(7), 1403–1414 (2001)CrossRefGoogle Scholar
  67. 52.67.
    W.T. Kimberly, J.B. Zheng, S.Y. Guenette, D.J. Selkoe: The intracellular domain of the beta-amyloid precursor protein is stabilized by Fe65 and translocates to the nucleus in a notch-like manner, J. Biol. Chem. 276(43), 40288–40292 (2001)CrossRefGoogle Scholar
  68. 52.68.
    K. Ando, K.I. Iijima, J.I. Elliott, Y. Kirino, T. Suzuki: Phosphorylation-dependent regulation of the interaction of amyloid precursor protein with Fe65 affects the production of beta-amyloid, J. Biol. Chem. 276(43), 40353–40361 (2001)CrossRefGoogle Scholar
  69. 52.69.
    D. Santiard-Baron, D. Langui, M. Delehedde, B. Delatour, B. Schombert, N. Touchet, G. Tremp, M.F. Paul, V. Blanchard, N. Sergeant, A. Delacourte, C. Duyckaerts, L. Pradier, L. Mercken: Expression of human Fe65 in amyloid precursor protein transgenic mice is associated with a reduction in beta-amyloid load, J. Neurochem. 93(2), 330–338 (2005)CrossRefGoogle Scholar
  70. 52.70.
    D. Zhou, N. Zambrano, T. Russo, L. DʼAdamio: Phosphorylation of a tyrosine in the amyloid-beta protein precursor intracellular domain inhibits Fe65 binding and signaling, J. Alzheimers Dis. 16(2), 301–307 (2009)Google Scholar
  71. 52.71.
    R. Tamayev, D. Zhou, L. DʼAdamio: The interactome of the amyloid beta precursor protein family members is shaped by phosphorylation of their intracellular domains, Mol. Neurodegener. 4, 28 (2009)CrossRefGoogle Scholar
  72. 52.72.
    J.H. Lee, K.F. Lau, M.S. Perkinton, C.L. Standen, S.J. Shemilt, L. Mercken, J.D. Cooper, D.M. McLoughlin, C.C. Miller: The neuronal adaptor protein X11alpha reduces Abeta levels in the brains of Alzheimerʼs APPswe Tg2576 transgenic mice, J. Biol. Chem. 278(47), 47025–47029 (2003)CrossRefGoogle Scholar
  73. 52.73.
    P.E. Tarr, C. Contursi, R. Roncarati, C. Noviello, E. Ghersi, M.H. Scheinfeld, N. Zambrano, T. Russo, L. DʼAdamio: Evidence for a role of the nerve growth factor receptor TrkA in tyrosine phosphorylation and processing of beta-APP, Biochem. Biophys. Res. Commun. 295(2), 324–329 (2002)CrossRefGoogle Scholar
  74. 52.74.
    A.J. Beel, C.K. Mobley, H.J. Kim, F. Tian, A. Hadziselimovic, B. Jap, J.H. Prestegard, C.R. Sanders: Structural studies of the transmembrane C-terminal domain of the amyloid precursor protein (APP): Does APP function as a cholesterol sensor?, Biochemistry 47(36), 9428–9446 (2008)CrossRefGoogle Scholar
  75. 52.75.
    R. Roncarati, N. Sestan, M.H. Scheinfeld, B.E. Berechid, P.A. Lopez, O. Meucci, J.C. McGlade, P. Rakic, L. DʼAdamio: The γ-secretase-generated intracellular domain of β-amyloid precursor protein binds Numb and inhibits Notch signaling, Proc. Natl. Acad. Sci. USA 99(10), 7102–7107 (2002)CrossRefGoogle Scholar
  76. 52.76.
    M.H. Scheinfeld, E. Ghersi, P. Davies, L. DʼAdamio: Amyloid beta protein precursor is phosphorylated by JNK-1 independent of, yet facilitated by, JNK-interacting protein (JIP)-1, J. Biol. Chem. 278(43), 42058–42063 (2003)CrossRefGoogle Scholar
  77. 52.77.
    D. Beher, L. Hesse, C.L. Masters, G. Multhaup: Regulation of amyloid protein precursor (APP) binding to collagen and mapping of the binding sites on APP and collagen type I, J. Biol. Chem. 271(3), 1613–1620 (1996)CrossRefGoogle Scholar
  78. 52.78.
    K.C. Breen: APP-collagen interaction is mediated by a heparin bridge mechanism, Mol. Chem. Neuropathol. 16(1–2), 109–121 (1992)CrossRefGoogle Scholar
  79. 52.79.
    C. Priller, T. Bauer, G. Mitteregger, B. Krebs, H.A. Kretzschmar, J. Herms: Synapse formation and function is modulated by the amyloid precursor protein, J. Neurosci. 26(27), 7212–7221 (2006)CrossRefGoogle Scholar
  80. 52.80.
    M.S. Lee, S.C. Kao, C.A. Lemere, W. Xia, H.C. Tseng, Y. Zhou, R. Neve, M.K. Ahlijanian, L.H. Tsai: APP processing is regulated by cytoplasmic phosphorylation, J. Cell Biol. 163(1), 83–95 (2003)CrossRefGoogle Scholar
  81. 52.81.
    T. Suzuki, T. Nakaya: Regulation of amyloid beta-protein precursor by phosphorylation and protein interactions, J. Biol. Chem. 283(44), 29633–29637 (2008)CrossRefGoogle Scholar
  82. 52.82.
    K.A. Chang, H.S. Kim, T.Y. Ha, J.W. Ha, K.Y. Shin, Y.H. Jeong, J.P. Lee, C.H. Park, S. Kim, T.K. Baik, Y.H. Suh: Phosphorylation of amyloid precursor protein (APP) at Thr668 regulates the nuclear translocation of the APP intracellular domain and induces neurodegeneration, Mol. Cell Biol. 26(11), 4327–4338 (2006)CrossRefGoogle Scholar
  83. 52.83.
    K.A. Chang, Y.H. Suh: Pathophysiological roles of amyloidogenic carboxy-terminal fragments of the beta-amyloid precursor protein in Alzheimerʼs disease, J. Pharmacol. Sci. 97(4), 461–471 (2005)CrossRefGoogle Scholar
  84. 52.84.
    H. Taru, T. Suzuki: Regulation of the physiological function and metabolism of AbetaPP by AbetaPP binding proteins, J. Alzheimers Dis. 18(2), 253–265 (2009)Google Scholar
  85. 52.85.
    H.N. Woo, J.S. Park, A.R. Gwon, T.V. Arumugam, D.G. Jo: Alzheimerʼs disease and Notch signaling, Biochem. Biophys. Res. Commun. 390(4), 1093–1097 (2009)CrossRefGoogle Scholar
  86. 52.86.
    F. Sola Vigo, G. Kedikian, L. Heredia, F. Heredia, A.D. Anel, A.L. Rosa, A. Lorenzo: Amyloid-beta precursor protein mediates neuronal toxicity of amyloid beta through Go protein activation, Neurobiol. Aging 30(9), 1379–1392 (2009)CrossRefGoogle Scholar
  87. 52.87.
    D.J. Selkoe: Cell biology of the amyloid beta-protein precursor and the mechanism of Alzheimerʼs disease, Annu. Rev. Cell Biol. 10, 373–403 (1994)CrossRefGoogle Scholar
  88. 52.88.
    D.J. Selkoe: Alzheimerʼs disease: Genes, proteins, and therapy, Physiol. Rev. 81(2), 741–766 (2001)Google Scholar
  89. 52.89.
    B.E. Slack, L.K. Ma, C.C. Seah: Constitutive shedding of the amyloid precursor protein ectodomain is up-regulated by tumour necrosis factor-alpha converting enzyme, Biochem J. 357(3), 787–794 (2001)CrossRefGoogle Scholar
  90. 52.90.
    T.M. Allinson, E.T. Parkin, A.J. Turner, N.M. Hooper: ADAMs family members as amyloid precursor protein alpha-secretases, J. Neurosci. Res. 74(3), 342–352 (2003)CrossRefGoogle Scholar
  91. 52.91.
    P. Yang, K.A. Baker, T. Hagg: The ADAMs family: Coordinators of nervous system development, plasticity and repair, Prog. Neurobiol. 79(2), 73–94 (2006)CrossRefGoogle Scholar
  92. 52.92.
    A.A. Talamagas, S. Efthimiopoulos, E.C. Tsilibary, M.E. Figueiredo-Pereira, A.K. Tzinia: Abeta(1–40)-induced secretion of matrix metalloproteinase-9 results in sAPPalpha release by association with cell surface APP, Neurobiol. Dis. 28(3), 304–315 (2007)CrossRefGoogle Scholar
  93. 52.93.
    M. Deuss, K. Reiss, D. Hartmann: Part-time alpha-secretases: The functional biology of ADAM 9, 10 and 17, Curr. Alzheimer Res. 5(2), 187–201 (2008)CrossRefGoogle Scholar
  94. 52.94.
    S. Choi, J.H. Kim, E.J. Roh, M.J. Ko, J.E. Jung, H.J. Kim: Nuclear factor-kappaB activated by capacitative Ca2+ entry enhances muscarinic receptor-mediated soluble amyloid precursor protein (sAPPalpha) release in SH-SY5Y cells, J. Biol. Chem. 281(18), 12722–12728 (2006)CrossRefGoogle Scholar
  95. 52.95.
    S. Rossner, M. Sastre, K. Bourne, S.F. Lichtenthaler: Transcriptional and translational regulation of BACE1 expression–implications for Alzheimerʼs disease, Prog. Neurobiol. 79(2), 95–111 (2006)CrossRefGoogle Scholar
  96. 52.96.
    A. Caccamo, S. Oddo, L.M. Billings, K.N. Green, H. Martinez-Coria, A. Fisher, F.M. LaFerla: M1 receptors play a central role in modulating AD-like pathology in transgenic mice, Neuron 49(5), 671–682 (2006)CrossRefGoogle Scholar
  97. 52.97.
    A. Fisher: M1 muscarinic agonists target major hallmarks of Alzheimerʼs disease – the pivotal role of brain M1 receptors, Neurodegener. Dis. 5(3–4), 237–240 (2008)CrossRefGoogle Scholar
  98. 52.98.
    R.M. Nitsch, B.E. Slack, S.A. Farber, J.G. Schulz, M. Deng, C. Kim, P.R. Borghesani, W. Korver, R.J. Wurtman, J.H. Growdon: Regulation of proteolytic processing of the amyloid beta-protein precursor of Alzheimerʼs disease in transfected cell lines and in brain slices, J. Neural. Transm. Suppl. 44, 21–27 (1994)Google Scholar
  99. 52.99.
    R.M. Canet-Aviles, M. Anderton, N.M. Hooper, A.J. Turner, P.F. Vaughan: Muscarine enhances soluble amyloid precursor protein secretion in human neuroblastoma SH-SY5Y by a pathway dependent on protein kinase Cα, src-tyrosine kinase and extracellular signal-regulated kinase but not phospholipase C, Brain Res. Mol. Brain Res. 102(1/2), 62–72 (2002)CrossRefGoogle Scholar
  100. 52.100.
    S.A. Farber, R.M. Nitsch, J.G. Schulz, R.J. Wurtman: Regulated secretion of beta-amyloid precursor protein in rat brain, J. Neurosci. 15(11), 7442–7451 (1995)Google Scholar
  101. 52.101.
    R. Etcheberrigaray, M. Tan, I. Dewachter, C. Kuiperi, I. Van der Auwera, S. Wera, L. Qiao, B. Bank, T.J. Nelson, A.P. Kozikowski, F. Van Leuven, D.L. Alkon: Therapeutic effects of PKC activators in Alzheimerʼs disease transgenic mice, Proc. Natl. Acad. Sci. USA 101(30), 11141–11146 (2004)CrossRefGoogle Scholar
  102. 52.102.
    S. Rossner, K. Mendla, R. Schliebs, V. Bigl: Protein kinase Cα and β1 isoforms are regulators of alpha-secretory proteolytic processing of amyloid precursor protein in vivo, Eur. J. Neurosci. 13(8), 1644–1648 (2001)CrossRefGoogle Scholar
  103. 52.103.
    N. Sawamura, M. Ko, W. Yu, K. Zou, K. Hanada, T. Suzuki, J.S. Gong, K. Yanagisawa, M. Michikawa: Modulation of amyloid precursor protein cleavage by cellular sphingolipids, J. Biol. Chem. 279(12), 11984–11991 (2004)CrossRefGoogle Scholar
  104. 52.104.
    G.P. Eckert, S. Chang, J. Eckmann, E. Copanaki, S. Hagl, U. Hener, W.E. Muller, D. Kogel: Liposome-incorporated DHA increases neuronal survival by enhancing non-amyloidogenic APP processing, Biochim. Biophys. Acta 1808(1), 236–243 (2011)CrossRefGoogle Scholar
  105. 52.105.
    C. Kim, C.H. Jang, J.H. Bang, M.W. Jung, I. JooI, S.U. Kim, I. Mook-Jung: Amyloid precursor protein processing is separately regulated by protein kinase C and tyrosine kinase in human astrocytes, Neurosci. Lett. 324(3), 185–188 (2002)CrossRefGoogle Scholar
  106. 52.106.
    J.M. Camden, A.M. Schrader, R.E. Camden, F.A. Gonzalez, L. Erb, C.I. Seye, G.A. Weisman: P2Y2 nucleotide receptors enhance alpha-secretase-dependent amyloid precursor protein processing, J. Biol. Chem. 280(19), 18696–18702 (2005)CrossRefGoogle Scholar
  107. 52.107.
    Q. Kong, T.S. Peterson, O. Baker, E. Stanley, J. Camden, C.I. Seye, L. Erb, A. Simonyi, W.G. Wood, G.Y. Sun, G.A. Weisman: Interleukin-1β enhances nucleotide-induced and α-secretase-dependent amyloid precursor protein processing in rat primary cortical neurons via up-regulation of the P2Y(2) receptor, J. Neurochem. 109(5), 1300–1310 (2009)CrossRefGoogle Scholar
  108. 52.108.
    Y. Tachida, K. Nakagawa, T. Saito, T.C. Saido, T. Honda, Y. Saito, S. Murayama, T. Endo, G. Sakaguchi, A. Kato, S. Kitazume, Y. Hashimoto: Interleukin-1 β up-regulates TACE to enhance α-cleavage of APP in neurons: Resulting decrease in Abeta production, J. Neurochem. 104(5), 1387–1393 (2008)CrossRefGoogle Scholar
  109. 52.109.
    D. Goldgaber, H.W. Harris, T. Hla, T. Maciag, R.J. Donnelly, J.S. Jacobsen, M.P. Vitek, D.C. Gajdusek: Interleukin 1 regulates synthesis of amyloid beta-protein precursor mRNA in human endothelial cells, Proc. Natl. Acad. Sci. USA 86(19), 7606–7610 (1989)CrossRefGoogle Scholar
  110. 52.110.
    E.M. Hwang, S.K. Kim, J.H. Sohn, J.Y. Lee, Y. Kim, Y.S. Kim, I. Mook-Jung: Furin is an endogenous regulator of alpha-secretase associated APP processing, Biochem. Biophys. Res. Commun. 349(2), 654–659 (2006)CrossRefGoogle Scholar
  111. 52.111.
    Y. Hiraoka, M. Ohno, K. Yoshida, K. Okawa, H. Tomimoto, T. Kita, E. Nishi: Enhancement of alpha-secretase cleavage of amyloid precursor protein by a metalloendopeptidase nardilysin, J. Neurochem. 102(5), 1595–1605 (2007)CrossRefGoogle Scholar
  112. 52.112.
    F. Tippmann, J. Hundt, A. Schneider, K. Endres, F. Fahrenholz: Up-regulation of the alpha-secretase ADAM10 by retinoic acid receptors and acitretin, FASEB J. 23(6), 1643–1654 (2009)CrossRefGoogle Scholar
  113. 52.113.
    A. Mudher, S. Chapman, J. Richardson, A. Asuni, G. Gibb, C. Pollard, R. Killick, T. Iqbal, L. Raymond, I. Varndell, P. Sheppard, A. Makoff, E. Gower, P.E. Soden, P. Lewis, M. Murphy, T.E. Golde, H.T. Rupniak, B.H. Anderton, S. Lovestone: Dishevelled regulates the metabolism of amyloid precursor protein via protein kinase C/mitogen-activated protein kinase and c-Jun terminal kinase, J. Neurosci. 21(14), 4987–4995 (2001)Google Scholar
  114. 52.114.
    W. Davis Jr.: The cholesterol transport inhibitor U18666a regulates amyloid precursor protein metabolism and trafficking in N2aAPP ``Swedishʼʼ cells, Curr. Alzheimer Res. 5(5), 448–456 (2008)CrossRefGoogle Scholar
  115. 52.115.
    C. Delarasse, R. Auger, P. Gonnord, B. Fontaine, J.M. Kanellopoulos: The purinergic receptor P2X7 triggers alpha-secretase-dependent processing of the amyloid precursor protein, J. Biol. Chem. 286(4), 2596–2606 (2011)CrossRefGoogle Scholar
  116. 52.116.
    M. Sanchez-Alavez, S.L. Chan, M.P. Mattson, J.R. Criado: Electrophysiological and cerebrovascular effects of the alpha-secretase-derived form of amyloid precursor protein in young and middle-aged rats, Brain Res. 1131(1), 112–117 (2007)CrossRefGoogle Scholar
  117. 52.117.
    A. Ishida, K. Furukawa, J.N. Keller, M.P. Mattson: Secreted form of beta-amyloid precursor protein shifts the frequency dependency for induction of LTD, and enhances LTP in hippocampal slices, Neuroreport. 8(9/10), 2133–2137 (1997)CrossRefGoogle Scholar
  118. 52.118.
    K. Furukawa, S.W. Barger, E.M. Blalock, M.P. Mattson: Activation of K+ channels and suppression of neuronal activity by secreted beta-amyloid-precursor protein, Nature 379(6560), 74–78 (1996)CrossRefGoogle Scholar
  119. 52.119.
    K. Furukawa, M.P. Mattson: Secreted amyloid precursor protein alpha selectively suppresses N-methyl-d-aspartate currents in hippocampal neurons: Involvement of cyclic GMP, Neuroscience 83(2), 429–438 (1998)CrossRefGoogle Scholar
  120. 52.120.
    C.J. Taylor, D.R. Ireland, I. Ballagh, K. Bourne, N.M. Marechal, P.R. Turner, D.K. Bilkey, W.P. Tate, W.C. Abraham: Endogenous secreted amyloid precursor protein-alpha regulates hippocampal NMDA receptor function, long-term potentiation and spatial memory, Neurobiol. Dis. 31(2), 250–260 (2008)CrossRefGoogle Scholar
  121. 52.121.
    T.D. Stein, J.A. Johnson: Lack of neurodegeneration in transgenic mice overexpressing mutant amyloid precursor protein is associated with increased levels of transthyretin and the activation of cell survival pathways, J. Neurosci. 22(17), 7380–7388 (2002)Google Scholar
  122. 52.122.
    R. Costa, F. Ferreira-da-Silva, M.J. Saraiva, I. Cardoso: Transthyretin protects against A-beta peptide toxicity by proteolytic cleavage of the peptide: A mechanism sensitive to the Kunitz protease inhibitor, PLoS ONE 3(8), e2899 (2008)CrossRefGoogle Scholar
  123. 52.123.
    M. Gralle, M.G. Botelho, F.S. Wouters: Neuroprotective secreted amyloid precursor protein acts by disrupting amyloid precursor protein dimers, J. Biol. Chem. 284(22), 15016–15025 (2009)CrossRefGoogle Scholar
  124. 52.124.
    T.L. Young-Pearse, A.C. Chen, R. Chang, C. Marquez, D.J. Selkoe: Secreted APP regulates the function of full-length APP in neurite outgrowth through interaction with integrin beta1, Neural Dev. 3, 15 (2008)CrossRefGoogle Scholar
  125. 52.125.
    M.P. Mattson, Z.H. Guo, J.D. Geiger: Secreted form of amyloid precursor protein enhances basal glucose and glutamate transport and protects against oxidative impairment of glucose and glutamate transport in synaptosomes by a cyclic GMP-mediated mechanism, J. Neurochem. 73(2), 532–537 (1999)CrossRefGoogle Scholar
  126. 52.126.
    S. Jimenez, M. Torres, M. Vizuete, R. Sanchez-Varo, E. Sanchez-Mejias, L. Trujillo-Estrada, I. Carmona-Cuenca, C. Caballero, D. Ruano, A. Gutierrez, J. Vitorica: Age-dependent accumulation of soluble Abeta oligomers reverses the neuroprotective effect of sAPPalpha by modulating PI3K/Akt-GSK-3beta pathway in Alzheimer mice model, J. Biol. Chem. 286(21), 18414–18425 (2011)CrossRefGoogle Scholar
  127. 52.127.
    S.L. Cole, R. Vassar: The Alzheimerʼs disease beta-secretase enzyme, BACE1, Mol. Neurodegener. 2, 22 (2007)CrossRefGoogle Scholar
  128. 52.128.
    X. Sun, Y. Wang, H. Qing, M.A. Christensen, Y. Liu, W. Zhou, Y. Tong, C. Xiao, Y. Huang, S. Zhang, X. Liu, W. Song: Distinct transcriptional regulation and function of the human BACE2 and BACE1 genes, FASEB J. 19(7), 739–749 (2005)CrossRefGoogle Scholar
  129. 52.129.
    A. Matsumoto, K. Itoh, R. Matsumoto: A novel carboxypeptidase B that processes native beta-amyloid precursor protein is present in human hippocampus, Eur. J. Neurosci. 12(1), 227–238 (2000)CrossRefGoogle Scholar
  130. 52.130.
    T. Zuchner, J.R. Perez-Polo, R. Schliebs: Beta-secretase BACE1 is differentially controlled through muscarinic acetylcholine receptor signaling, J. Neurosci. Res. 77(2), 250–257 (2004)CrossRefGoogle Scholar
  131. 52.131.
    M. Beckman, R.M. Holsinger, D.H. Small: Heparin activates beta-secretase (BACE1) of Alzheimerʼs disease and increases autocatalysis of the enzyme, Biochemistry 45(21), 6703–6714 (2006)CrossRefGoogle Scholar
  132. 52.132.
    S.J. Patey, E.A. Edwards, E.A. Yates, J.E. Turnbull: Heparin derivatives as inhibitors of BACE-1, the Alzheimerʼs beta-secretase, with reduced activity against factor Xa and other proteases, J. Med. Chem. 49(20), 6129–6132 (2006)CrossRefGoogle Scholar
  133. 52.133.
    S.J. Patey, E.A. Edwards, E.A. Yates, J.E. Turnbull: Engineered heparins: Novel beta-secretase inhibitors as potential Alzheimerʼs disease therapeutics, Neurodegener. Dis. 5(3/4), 197–199 (2008)CrossRefGoogle Scholar
  134. 52.134.
    W. Liskowsky, R. Schliebs: Muscarinic acetylcholine receptor inhibition in transgenic Alzheimer-like Tg2576 mice by scopolamine favours the amyloidogenic route of processing of amyloid precursor protein, Int. J. Dev. Neurosci. 24(2–3), 149–156 (2006)CrossRefGoogle Scholar
  135. 52.135.
    N. Pierrot, P. Ghisdal, A.S. Caumont, J.N. Octave: Intraneuronal amyloid-beta1 − 42 production triggered by sustained increase of cytosolic calcium concentration induces neuronal death, J. Neurochem. 88(5), 1140–1150 (2004)CrossRefGoogle Scholar
  136. 52.136.
    W.W. Liu, S. Todd, D.T. Coulson, G.B. Irvine, A.P. Passmore, B. McGuinness, M. McConville, D. Craig, J.A. Johnston: A novel reciprocal and biphasic relationship between membrane cholesterol and beta-secretase activity in SH-SY5Y cells and in human platelets, J. Neurochem. 108(2), 341–349 (2009)CrossRefGoogle Scholar
  137. 52.137.
    J. Abad-Rodriguez, M.D. Ledesma, K. Craessaerts, S. Perga, M. Medina, A. Delacourte, C. Dingwall, B. De Strooper, C.G. Dotti: Neuronal membrane cholesterol loss enhances amyloid peptide generation, J. Cell Biol. 167(5), 953–960 (2004)CrossRefGoogle Scholar
  138. 52.138.
    J.M. Cordy, I. Hussain, C. Dingwall, N.M. Hooper, A.J. Turner: Exclusively targeting beta-secretase to lipid rafts by GPI-anchor addition up-regulates beta-site processing of the amyloid precursor protein, Proc. Natl. Acad. Sci. USA 100(20), 11735–11740 (2003)CrossRefGoogle Scholar
  139. 52.139.
    J.C. Dodart, K.R. Bales, E.M. Johnstone, S.P. Little, S.M. Paul: Apolipoprotein E alters the processing of the beta-amyloid precursor protein in APP(V717F) transgenic mice, Brain Res. 955(1–2), 191–199 (2002)CrossRefGoogle Scholar
  140. 52.140.
    X. Zhang, K. Zhou, R. Wang, J. Cui, S.A. Lipton, F.F. Liao, H. Xu, Y.W. Zhang: Hypoxia-inducible factor 1alpha (HIF-1alpha)-mediated hypoxia increases BACE1 expression and beta-amyloid generation, J. Biol. Chem. 282(15), 10873–10880 (2007)CrossRefGoogle Scholar
  141. 52.141.
    H.S. Hoe, M.J. Cooper, M.P. Burns, P.A. Lewis, M. van der Brug, G. Chakraborty, C.M. Cartagena, D.T. Pak, M.R. Cookson, G.W. Rebeck: The metalloprotease inhibitor TIMP-3 regulates amyloid precursor protein and apolipoprotein E receptor proteolysis, J. Neurosci. 27(40), 10895–10905 (2007)CrossRefGoogle Scholar
  142. 52.142.
    K.S. Vetrivel, Y.W. Zhang, H. Xu, G. Thinakaran: Pathological and physiological functions of presenilins, Mol. Neurodegener. 1, 4 (2006)CrossRefGoogle Scholar
  143. 52.143.
    J. Shen, R.J. Kelleher III: The presenilin hypothesis of Alzheimerʼs disease: Evidence for a loss-of-function pathogenic mechanism, Proc. Natl. Acad. Sci. USA 104(2), 403–409 (2007)CrossRefGoogle Scholar
  144. 52.144.
    K. Uemura, A. Kuzuya, S. Shimohama: Protein trafficking and Alzheimerʼs disease, Curr. Alzheimer Res. 1(1), 1–10 (2004)CrossRefGoogle Scholar
  145. 52.145.
    J.H. Boo, J.H. Sohn, J.E. Kim, H. Song, I. Mook-Jung: Rac1 changes the substrate specificity of γ-secretase between amyloid precursor protein and Notch1, Biochem. Biophys. Res. Commun. 372(4), 913–917 (2008)CrossRefGoogle Scholar
  146. 52.146.
    K.S. Vetrivel, H. Cheng, S.H. Kim, Y. Chen, N.Y. Barnes, A.T. Parent, S.S. Sisodia, G. Thinakaran: Spatial segregation of gamma-secretase and substrates in distinct membrane domains, J. Biol. Chem. 280(27), 25892–25900 (2005)CrossRefGoogle Scholar
  147. 52.147.
    E.S. Walker, M. Martinez, A.L. Brunkan, A. Goate: Presenilin 2 familial Alzheimerʼs disease mutations result in partial loss of function and dramatic changes in Abeta 42/40 ratios, J. Neurochem. 92(2), 294–301 (2005)CrossRefGoogle Scholar
  148. 52.148.
    J. Hardy, D.J. Selkoe: The amyloid hypothesis of Alzheimerʼs disease: Progress and problems on the road to therapeutics, Science 297(5580), 353–356 (2002)CrossRefGoogle Scholar
  149. 52.149.
    L. Herl, A.V. Thomas, C.M. Lill, M. Banks, A. Deng, P.B. Jones, R. Spoelgen, B.T. Hyman, O. Berezovska: Mutations in amyloid precursor protein affect its interactions with presenilin/gamma-secretase, Mol. Cell Neurosci. 41(2), 166–174 (2009)CrossRefGoogle Scholar
  150. 52.150.
    C.L. Maarouf, I.D. Daugs, S. Spina, R. Vidal, T.A. Kokjohn, R.L. Patton, W.M. Kalback, D.C. Luehrs, D.G. Walker, E.M. Castano, T.G. Beach, B. Ghetti, A.E. Roher: Histopathological and molecular heterogeneity among individuals with dementia associated with Presenilin mutations, Mol. Neurodegener 3, 20 (2008)CrossRefGoogle Scholar
  151. 52.151.
    M. Bentahir, O. Nyabi, J. Verhamme, A. Tolia, K. Horre, J. Wiltfang, H. Esselmann, B. De Strooper: Presenilin clinical mutations can affect gamma-secretase activity by different mechanisms, J. Neurochem. 96(3), 732–742 (2006)CrossRefGoogle Scholar
  152. 52.152.
    M.X. Silveyra, G. Evin, M.F. Montenegro, C.J. Vidal, S. Martinez, J.G. Culvenor, J. Saez-Valero: Presenilin 1 interacts with acetylcholinesterase and alters its enzymatic activity and glycosylation, Mol. Cell Biol. 28(9), 2908–2919 (2008)CrossRefGoogle Scholar
  153. 52.153.
    I. Schneider, D. Reverse, I. Dewachter, L. Ris, N. Caluwaerts, C. Kuiperi, M. Gilis, H. Geerts, H. Kretzschmar, E. Godaux, D. Moechars, F. Van Leuven, J. Herms: Mutant presenilins disturb neuronal calcium homeostasis in the brain of transgenic mice, decreasing the threshold for excitotoxicity and facilitating long-term potentiation., J. Biol. Chem. 276(15), 11539–11544 (2001)CrossRefGoogle Scholar
  154. 52.154.
    Y. Wang, N.H. Greig, Q.S. Yu, M.P. Mattson: Presenilin-1 mutation impairs cholinergic modulation of synaptic plasticity and suppresses NMDA currents in hippocampus slices, Neurobiol. Aging 30(7), 1061–1068 (2009)CrossRefGoogle Scholar
  155. 52.155.
    C. Feyt, N. Pierrot, B. Tasiaux, J. Van Hees, P. Kienlen-Campard, P.J. Courtoy, J.N. Octave: Phosphorylation of APP695 at Thr668 decreases gamma-cleavage and extracellular Abeta, Biochem. Biophys. Res. Commun. 357(4), 1004–1010 (2007)CrossRefGoogle Scholar
  156. 52.156.
    V. Vingtdeux, M. Hamdane, M. Gompel, S. Begard, H. Drobecq, A. Ghestem, M.E. Grosjean, V. Kostanjevecki, P. Grognet, E. Vanmechelen, L. Buee, A. Delacourte, N. Sergeant: Phosphorylation of amyloid precursor carboxy-terminal fragments enhances their processing by a gamma-secretase-dependent mechanism, Neurobiol. Dis. 20(2), 625–637 (2005)CrossRefGoogle Scholar
  157. 52.157.
    M. Burns, K. Gaynor, V. Olm, M. Mercken, J. LaFrancois, L. Wang, P.M. Mathews, W. Noble, Y. Matsuoka, K. Duff: Presenilin redistribution associated with aberrant cholesterol transport enhances beta-amyloid production in vivo, J. Neurosci. 23(13), 5645–5649 (2003)Google Scholar
  158. 52.158.
    M.P. Burns, U. Igbavboa, L. Wang, W.G. Wood, K. Duff: Cholesterol distribution, not total levels, correlate with altered amyloid precursor protein processing in statin-treated mice, Neuromol. Med. 8(3), 319–328 (2006)CrossRefGoogle Scholar
  159. 52.159.
    K.S. Vetrivel, H. Cheng, W. Lin, T. Sakurai, T. Li, N. Nukina, P.C. Wong, H. Xu, G. Thinakaran: Association of gamma-secretase with lipid rafts in post-Golgi and endosome membranes, J. Biol. Chem. 279(43), 44945–44954 (2004)CrossRefGoogle Scholar
  160. 52.160.
    R.A. Fuentealba, M.I. Barria, J. Lee, J. Cam, C. Araya, C.A. Escudero, N.C. Inestrosa, F.C. Bronfman, G. Bu, M.P. Marzolo: ApoER2 expression increases Abeta production while decreasing Amyloid Precursor Protein (APP) endocytosis: Possible role in the partitioning of APP into lipid rafts and in the regulation of gamma-secretase activity, Mol. Neurodegener. 2, 14 (2007)CrossRefGoogle Scholar
  161. 52.161.
    W. Araki, H. Kume, A. Oda, A. Tamaoka, F. Kametani: IGF-1 promotes beta-amyloid production by a secretase-independent mechanism, Biochem. Biophy. Res. Commun. 380(1), 111–114 (2009)CrossRefGoogle Scholar
  162. 52.162.
    Y. Araki, S. Tomita, H. Yamaguchi, N. Miyagi, A. Sumioka, Y. Kirino, T. Suzuki: Novel cadherin-related membrane proteins, Alcadeins, enhance the X11-like protein-mediated stabilization of amyloid beta-protein precursor metabolism, J. Biol. Chem. 278(49), 49448–49458 (2003)CrossRefGoogle Scholar
  163. 52.163.
    I.S. Yoon, E. Chen, T. Busse, E. Repetto, M.K. Lakshmana, E.H. Koo, D.E. Kang: Low-density lipoprotein receptor-related protein promotes amyloid precursor protein trafficking to lipid rafts in the endocytic pathway, FASEB Journal 21(11), 2742–2752 (2007)CrossRefGoogle Scholar
  164. 52.164.
    A. Lleo, E. Waldron, C.A. von Arnim, L. Herl, M.M. Tangredi, I.D. Peltan, D.K. Strickland, E.H. Koo, B.T. Hyman, C.U. Pietrzik, O. Berezovska: Low density lipoprotein receptor-related protein (LRP) interacts with presenilin 1 and is a competitive substrate of the amyloid precursor protein (APP) for gamma-secretase, J. Biol. Chem. 280(29), 27303–27309 (2005)CrossRefGoogle Scholar
  165. 52.165.
    Q. Liu, C.V. Zerbinatti, J. Zhang, H.S. Hoe, B. Wang, S.L. Cole, J. Herz, L. Muglia, G. Bu: Amyloid precursor protein regulates brain apolipoprotein E and cholesterol metabolism through lipoprotein receptor LRP1, Neuron 56(1), 66–78 (2007)CrossRefGoogle Scholar
  166. 52.166.
    A. Oda, A. Tamaoka, W. Araki: Oxidative stress up-regulates presenilin 1 in lipid rafts in neuronal cells, J. Neurosci. Res. 88(5), 1137–1145 (2009)Google Scholar
  167. 52.167.
    Y.F. Liao, B.J. Wang, H.T. Cheng, L.H. Kuo, M.S. Wolfe: Tumor necrosis factor-alpha, interleukin-1beta, and interferon-gamma stimulate gamma-secretase-mediated cleavage of amyloid precursor protein through a JNK-dependent MAPK pathway, J. Biol. Chem. 279(47), 49523–49532 (2004)CrossRefGoogle Scholar
  168. 52.168.
    K. Suga, A. Saito, T. Tomiyama, H. Mori, K. Akagawa: Syntaxin 5 interacts specifically with presenilin holoproteins and affects processing of betaAPP in neuronal cells, J. Neurochem. 94(2), 425–439 (2005)CrossRefGoogle Scholar
  169. 52.169.
    A. Lleo, O. Berezovska, P. Ramdya, H. Fukumoto, S. Raju, T. Shah, B.T. Hyman: Notch1 competes with the amyloid precursor protein for gamma-secretase and down-regulates presenilin-1 gene expression, J. Biol. Chem. 278(48), 47370–47375 (2003)CrossRefGoogle Scholar
  170. 52.170.
    R. Pardossi-Piquard, C. Bohm, F. Chen, S. Kanemoto, F. Checler, G. Schmitt-Ulms, P. St George-Hyslop, P.E. Fraser: TMP21 transmembrane domain regulates gamma-secretase cleavage, J. Biol. Chem. 284(42), 28634–28641 (2009)CrossRefGoogle Scholar
  171. 52.171.
    A.R. Koudinov, T.T. Berezov, A. Kumar, N.V. Koudinova: Alzheimerʼs amyloid beta interaction with normal human plasma high density lipoprotein: Association with apolipoprotein and lipids, Clin. Chim. Acta 270(2), 75–84 (1998)CrossRefGoogle Scholar
  172. 52.172.
    B.V. Zlokovic, S. Yamada, D. Holtzman, J. Ghiso, B. Frangione: Clearance of amyloid beta-peptide from brain: Transport or metabolism?, Nat. Med. 6(7), 718–719 (2000)CrossRefGoogle Scholar
  173. 52.173.
    D.M. Holtzman, A.M. Fagan, B. Mackey, T. Tenkova, L. Sartorius, S.M. Paul, K. Bales, K.H. Ashe, M.C. Irizarry, B.T. Hyman: Apolipoprotein E facilitates neuritic and cerebrovascular plaque formation in an Alzheimerʼs disease model, Ann. Neurol. 47(6), 739–747 (2000)CrossRefGoogle Scholar
  174. 52.174.
    S. Tamamizu-Kato, J.K. Cohen, C.B. Drake, M.G. Kosaraju, J. Drury, V. Narayanaswami: Interaction with amyloid beta peptide compromises the lipid binding function of apolipoprotein E, Biochemistry 47(18), 5225–5234 (2008)CrossRefGoogle Scholar
  175. 52.175.
    E. Terzi, G. Holzemann, J. Seelig: Interaction of Alzheimer beta-amyloid peptide (1–40) with lipid membranes, Biochemistry 36(48), 14845–14852 (1997)CrossRefGoogle Scholar
  176. 52.176.
    C. Hertel, E. Terzi, N. Hauser, R. Jakob-Rotne, J. Seelig, J.A. Kemp: Inhibition of the electrostatic interaction between beta-amyloid peptide and membranes prevents beta-amyloid-induced toxicity, Proc. Natl. Acad. Sci. USA 94(17), 9412–9416 (1997)CrossRefGoogle Scholar
  177. 52.177.
    Y. Verdier, M. Zarandi, B. Penke: Amyloid beta-peptide interactions with neuronal and glial cell plasma membrane: Binding sites and implications for Alzheimerʼs disease, J. Pept. Sci. 10(5), 229–248 (2004)CrossRefGoogle Scholar
  178. 52.178.
    L. Saavedra, A. Mohamed, V. Ma, S. Kar, E.P. de Chaves: Internalization of beta-amyloid peptide by primary neurons in the absence of apolipoprotein E, J. Biol. Chem. 282(49), 35722–35732 (2007)CrossRefGoogle Scholar
  179. 52.179.
    N.A. Avdulov, S.V. Chochina, U. Igbavboa, C.S. Warden, A.V. Vassiliev, W.G. Wood: Lipid binding to amyloid beta-peptide aggregates: Preferential binding of cholesterol as compared with phosphatidylcholine and fatty acids., J. Neurochem. 69(4), 1746–1752 (1997)CrossRefGoogle Scholar
  180. 52.180.
    Z. Kristofikova, V. Kopecky Jr., K. Hofbauerova, P. Hovorkova, D. Ripova: Complex of amyloid beta peptides with 24-hydroxycholesterol and its effect on hemicholinium-3 sensitive carriers, Neurochem. Res. 33(3), 412–421 (2008)CrossRefGoogle Scholar
  181. 52.181.
    Q. Wang, I. Klyubin, S. Wright, I. Griswold-Prenner, M.J. Rowan, R. Anwyl: αv integrins mediate beta-amyloid induced inhibition of long-term potentiation, Neurobiol. Aging 29(10), 1485–1493 (2008)CrossRefGoogle Scholar
  182. 52.182.
    M.N. Wu, Y.X. He, F. Guo, J.S. Qi: Alpha4beta2 nicotinic acetylcholine receptors are required for the amyloid beta protein-induced suppression of long-term potentiation in rat hippocampal CA1 region in vivo, Brain Res. Bull. 77(2–3), 84–90 (2008)CrossRefGoogle Scholar
  183. 52.183.
    G. Yamin: NMDA receptor-dependent signaling pathways that underlie amyloid beta-protein disruption of LTP in the hippocampus, J. Neurosci. Res. 87(8), 1729–1736 (2009)CrossRefGoogle Scholar
  184. 52.184.
    F.J. Sepulveda, C. Opazo, L.G. Aguayo: Alzheimer beta-amyloid blocks epileptiform activity in hippocampal neurons, Mol. Cell Neurosci. 41(4), 420–428 (2009)CrossRefGoogle Scholar
  185. 52.185.
    Z. Gu, W. Liu, Z. Yan: β-Amyloid impairs AMPA receptor trafficking and function by reducing Ca2+/calmodulin-dependent protein kinase II synaptic distribution, J. Biol. Chem. 284(16), 10639–10649 (2009)CrossRefGoogle Scholar
  186. 52.186.
    D. Zhao, J.B. Watson, C.W. Xie: Amyloid beta prevents activation of calcium/calmodulin-dependent protein kinase II and AMPA receptor phosphorylation during hippocampal long-term potentiation, J. Neurophysiol. 92(5), 2853–2858 (2004)CrossRefGoogle Scholar
  187. 52.187.
    A. Perez, L. Morelli, J.C. Cresto, E.M. Castano: Degradation of soluble amyloid beta-peptides 1–40, 1–42, and the Dutch variant 1–40Q by insulin degrading enzyme from Alzheimer disease and control brains, Neurochem. Res. 25(2), 247–255 (2000)CrossRefGoogle Scholar
  188. 52.188.
    Y. Shen, T. Sullivan, C.M. Lee, S. Meri, K. Shiosaki, C.W. Lin: Induced expression of neuronal membrane attack complex and cell death by Alzheimerʼs beta-amyloid peptide, Brain Res. 796(1–2), 187–197 (1998)CrossRefGoogle Scholar
  189. 52.189.
    R.G. Nagele, M.R. DʼAndrea, W.J. Anderson, H.Y. Wang: Intracellular accumulation of beta-amyloid (1–42) in neurons is facilitated by the alpha 7 nicotinic acetylcholine receptor in Alzheimerʼs disease, Neuroscience 110(2), 199–211 (2002)CrossRefGoogle Scholar
  190. 52.190.
    D.H. Lee, H.Y. Wang: Differential physiologic responses of alpha7 nicotinic acetylcholine receptors to beta-amyloid1 − 40 and beta-amyloid1 − 42, J. Neurobiol. 55(1), 25–30 (2003)MathSciNetCrossRefGoogle Scholar
  191. 52.191.
    J.J. Dougherty, J. Wu, R.A. Nichols: Beta-amyloid regulation of presynaptic nicotinic receptors in rat hippocampus and neocortex, J. Neurosci. 23(17), 6740–6747 (2003)Google Scholar
  192. 52.192.
    H. Tozaki, A. Matsumoto, T. Kanno, K. Nagai, T. Nagata, S. Yamamoto, T. Nishizaki: The inhibitory and facilitatory actions of amyloid-beta peptides on nicotinic ACh receptors and AMPA receptors, Biochem. Biophys. Res. Commun. 294(1), 42–45 (2002)CrossRefGoogle Scholar
  193. 52.193.
    T. Kihara, S. Shimohama, M. Urushitani, H. Sawada, J. Kimura, T. Kume, T. Maeda, A. Akaike: Stimulation of alpha4beta2 nicotinic acetylcholine receptors inhibits beta-amyloid toxicity, Brain Res. 792(2), 331–334 (1998)CrossRefGoogle Scholar
  194. 52.194.
    H.Y. Wang, D.H. Lee, M.R. DʼAndrea, P.A. Peterson, R.P. Shank, A.B. Reitz: β-Amyloid1 − 42 binds to alpha7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimerʼs disease pathology, J. Biol. Chem. 275(8), 5626–5632 (2000)CrossRefGoogle Scholar
  195. 52.195.
    E.M. Snyder, Y. Nong, C.G. Almeida, S. Paul, T. Moran, E.Y. Choi, A.C. Nairn, M.W. Salter, P.J. Lombroso, G.K. Gouras, P. Greengard: Regulation of NMDA receptor trafficking by amyloid-beta, Nat. Neurosci. 8(8), 1051–1058 (2005)CrossRefGoogle Scholar
  196. 52.196.
    M. Hu, M.E. Schurdak, P.S. Puttfarcken, R. El Kouhen, M. Gopalakrishnan, J. Li: High content screen microscopy analysis of A beta 1–42-induced neurite outgrowth reduction in rat primary cortical neurons: Neuroprotective effects of alpha 7 neuronal nicotinic acetylcholine receptor ligands, Brain Res. 1151, 227–235 (2007)CrossRefGoogle Scholar
  197. 52.197.
    O.V. Vitolo, A. SantʼAngelo, V. Costanzo, F. Battaglia, O. Arancio, M. Shelanski: Amyloid beta -peptide inhibition of the PKA/CREB pathway and long-term potentiation: Reversibility by drugs that enhance cAMP signaling, Proc. Natl. Acad. Sci. USA 99(20), 13217–13221 (2002)CrossRefGoogle Scholar
  198. 52.198.
    A. Favit, M. Grimaldi, T.J. Nelson, D.L. Alkon: Alzheimerʼs-specific effects of soluble beta-amyloid on protein kinase C-alpha and -gamma degradation in human fibroblasts, Proc. Natl. Acad. Sci. USA 95(10), 5562–5567 (1998)CrossRefGoogle Scholar
  199. 52.199.
    J.J. Abbott, D.R. Howlett, P.T. Francis, R.J. Williams: Abeta1 − 42 modulation of Akt phosphorylation via alpha7 nAChR and NMDA receptors, Neurobiol. Aging 29(7), 992–1001 (2008)CrossRefGoogle Scholar
  200. 52.200.
    Z. Suo, M. Wu, B.A. Citron, G.T. Wong, B.W. Festoff: Abnormality of G-protein-coupled receptor kinases at prodromal and early stages of Alzheimerʼs disease: An association with early beta-amyloid accumulation, J. Neurosci. 24(13), 3444–3452 (2004)CrossRefGoogle Scholar
  201. 52.201.
    I. Dewachter, R.K. Filipkowski, C. Priller, L. Ris, J. Neyton, S. Croes, D. Terwel, M. Gysemans, H. Devijver, P. Borghgraef, E. Godaux, L. Kaczmarek, J. Herms, F. Van Leuven: Deregulation of NMDA-receptor function and down-stream signaling in APP[V717I] transgenic mice, Neurobiol. Aging 30(2), 241–256 (2009)CrossRefGoogle Scholar
  202. 52.202.
    E.L. Schaeffer, W.F. Gattaz: Cholinergic and glutamatergic alterations beginning at the early stages of Alzheimer disease: Participation of the phospholipase A2 enzyme, Psychopharmacology 198(1), 1–27 (2008)CrossRefGoogle Scholar
  203. 52.203.
    H.Y. Wang, A. Stucky, J. Liu, C. Shen, C. Trocme-Thibierge, P. Morain: Dissociating beta-amyloid from alpha 7 nicotinic acetylcholine receptor by a novel therapeutic agent, S 24795, normalizes alpha 7 nicotinic acetylcholine and NMDA receptor function in Alzheimerʼs disease brain, J. Neurosci. 29(35), 10961–10973 (2009)CrossRefGoogle Scholar
  204. 52.204.
    L.R. Fodero, S.S. Mok, D. Losic, L.L. Martin, M.I. Aguilar, C.J. Barrow, B.G. Livett, D.H. Small: Alpha7-nicotinic acetylcholine receptors mediate an Abeta(1–42)-induced increase in the level of acetylcholinesterase in primary cortical neurones, J. Neurochem. 88(5), 1186–1193 (2004)CrossRefGoogle Scholar
  205. 52.205.
    Y. Goto, T. Niidome, H. Hongo, A. Akaike, T. Kihara, H. Sugimoto: Impaired muscarinic regulation of excitatory synaptic transmission in the APPswe/PS1dE9 mouse model of Alzheimerʼs disease, Eur. J. Pharmacol. 583(1), 84–91 (2008)CrossRefGoogle Scholar
  206. 52.206.
    C. Ye, D.M. Walsh, D.J. Selkoe, D.M. Hartley: Amyloid beta-protein induced electrophysiological changes are dependent on aggregation state: N-methyl-d-aspartate (NMDA) versus non-NMDA receptor/channel activation, Neurosci. Lett. 366(3), 320–325 (2004)CrossRefGoogle Scholar
  207. 52.207.
    A.W. Schmid, D.B. Freir, C.E. Herron: Inhibition of LTP in vivo by beta-amyloid peptide in different conformational states, Brain Res. 1197, 135–142 (2008)CrossRefGoogle Scholar
  208. 52.208.
    N.C. Inestrosa, A. Alvarez, M.C. Dinamarca, T. Perez-Acle, M. Colombres: Acetylcholinesterase-amyloid-beta-peptide interaction: Effect of Congo Red and the role of the Wnt pathway, Curr. Alzheimer Res. 2(3), 301–306 (2005)CrossRefGoogle Scholar
  209. 52.209.
    R.N. Kalaria, S.N. Kroon, I. Grahovac, G. Perry: Acetylcholinesterase and its association with heparan sulphate proteoglycans in cortical amyloid deposits of Alzheimerʼs disease, Neuroscience 51(1), 177–184 (1992)CrossRefGoogle Scholar
  210. 52.210.
    R. Schliebs, T. Arendt: The significance of the cholinergic system in the brain during aging and in Alzheimerʼs disease, J. Neural Transm. 113(11), 1625–1644 (2006)CrossRefGoogle Scholar
  211. 52.211.
    K. Furukawa, B.L. Sopher, R.E. Rydel, J.G. Begley, D.G. Pham, G.M. Martin, M. Fox, M.P. Mattson: Increased activity-regulating and neuroprotective efficacy of alpha-secretase-derived secreted amyloid precursor protein conferred by a C-terminal heparin-binding domain, J. Neurochem. 67(5), 1882–1896 (1996)CrossRefGoogle Scholar
  212. 52.212.
    O. Almkvist, H. Basun, S.L. Wagner, B.A. Rowe, L.O. Wahlund, L. Lannfelt: Cerebrospinal fluid levels of alpha-secretase-cleaved soluble amyloid precursor protein mirror cognition in a Swedish family with Alzheimer disease and a gene mutation, Arch. Neurol. 54(5), 641–644 (1997)CrossRefGoogle Scholar
  213. 52.213.
    K. Sennvik, J. Fastbom, M. Blomberg, L.O. Wahlund, B. Winblad, E. Benedikz: Levels of alpha- and beta-secretase cleaved amyloid precursor protein in the cerebrospinal fluid of Alzheimerʼs disease patients, Neurosci. Lett. 278(3), 169–172 (2000)CrossRefGoogle Scholar
  214. 52.214.
    J.R. Cirrito, J.E. Kang, J. Lee, F.R. Stewart, D.K. Verges, L.M. Silverio, G. Bu, S. Mennerick, D.M. Holtzman: Endocytosis is required for synaptic activity-dependent release of amyloid-beta in vivo, Neuron 58(1), 42–51 (2008)CrossRefGoogle Scholar
  215. 52.215.
    K. Zou, D. Kim, A. Kakio, K. Byun, J.S. Gong, J. Kim, M. Kim, N. Sawamura, S. Nishimoto, K. Matsuzaki, B. Lee, K. Yanagisawa, M. Michikawa: Amyloid beta-protein (Abeta)1 − 40 protects neurons from damage induced by Abeta1 − 42 in culture and in rat brain, J. Neurochem. 87(3), 609–619 (2003)CrossRefGoogle Scholar
  216. 52.216.
    D.R. Thal, I. Sassin, C. Schultz, C. Haass, E. Braak, H. Braak: Fleecy amyloid deposits in the internal layers of the human entorhinal cortex are comprised of N-terminal truncated fragments of Abeta, J. Neuropathol. Exp. Neurol. 58(2), 210–216 (1999)CrossRefGoogle Scholar
  217. 52.217.
    L. Miravalle, M. Calero, M. Takao, A.E. Roher, B. Ghetti, R. Vidal: Amino-terminally truncated Abeta peptide species are the main component of cotton wool plaques, Biochemistry 44(32), 10810–10821 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2014

Authors and Affiliations

  1. 1.Public Health and Primary CareUniversity of CambridgeCambridgeUK
  2. 2.Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK

Personalised recommendations