Information Processing in the Gustatory System

  • Alexandra E. DʼAgostino
  • Patricia M. Di Lorenzo


Gustation is a sensory modality that is essential for survival. Information provided by the gustatory system enables identification and rejection of poisons and encourages ingestion of nutritious foods. In addition, fine taste discrimination, guided by postingestional feedback, is critical for the maintenance of energy homeostasis. The study of how gustatory information is processed by both the peripheral and the central nervous systems has been an active and fruitful area of investigation and has yielded some dramatic results in recent years. In this chapter, we will first discuss the general concept of neural coding of sensory information to provide a backdrop for the discussion of gustatory neural coding in particular. Next, the anatomy and organization of each level of the gustatory system from the tongue to the cortex will be presented in the context of various theories of sensory coding as they have been applied to gustation. Finally, we will reviewthe unifying ideas that characterize information processing in the taste system.


Taste Cell Spike Timing Spike Count Taste Quality Taste Stimulus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



across-fiber pattern


broad long-inhibition


bed nucleus of the stria terminalis


broad short-inhibition


central nervous system


chorda tympani


central nucleus of the amygdala


Granger causality


G protein coupled receptor


greater superficial petrosal


lateral hypothalamus


labeled line


lingual-tonsillar branch of the glossopharyngeal nerve


monosodium glutamate


nucleus of the solitary tract


polycystic kidney disease 1-like 3


polycystic kidney disease 2-like 1


parabrachial nucleus of the pons


scanning electron microscopy


substantia innominata


superior laryngeal branch of the vagus nerve


selective short-inhibition


taste receptor type 1 member 1


taste receptor type 1 member 2


taste receptor type 1 member 3


taste receptor cell


parvocellular subdivision of the ventral posteromedial nucleus of the thalamus


rostral nucleus of the solitary tract


  1. 45.1.
    S.M. Schuetze: The discovery of the action potential, Trends Neurosci. 6, 164–168 (1983)CrossRefGoogle Scholar
  2. 45.2.
    W.S. McCulloch, W. Pitts: A logical calculus of the ideas immanent in nervous activity, Bull. Math. Biophys. 5, 115–133 (1943)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 45.3.
    L. Kay: From logical neurons to poetic embodiments of mind: Warren S. McCullochʼs Project in neuroscience, Sci. Context 14(4), 591–615 (2001)CrossRefGoogle Scholar
  4. 45.4.
    B.P. Halpern: Sensory coding, decoding, and representations. Unnecessary and troublesome constructs?, Physiol. Behav. 69(1/2), 115–118 (2000)CrossRefGoogle Scholar
  5. 45.5.
    A.B. Tort, A. Fontanini, M.A. Kramer, L.M. Jones-Lush, N.J. Kopell, D.B. Katz: Cortical networks produce three distinct 7–12 Hz rhythms during single sensory responses in the awake rat, J. Neurosci. 30(12), 4315–4324 (2010)CrossRefGoogle Scholar
  6. 45.6.
    I.J. Miller: Anatomy of the peripheral taste system. In: In Handbook of Olfaction and Gustation, ed. by R.L. Doty (Marcel Dekker, New York 1995) pp. 521–547Google Scholar
  7. 45.7.
    N. Chaudhari, S.D. Roper: The cell biology of taste, J. Cell Biol. 190(3), 285–296 (2010)CrossRefGoogle Scholar
  8. 45.8.
    S.D. Roper: Signal Transduction and information processing in mammalian taste buds, Eur. J. Physiol. 454, 759–776 (2007)CrossRefGoogle Scholar
  9. 45.9.
    G. Nelson, M.A. Hoon, J. Chandrashekar, Y. Zhang, N.J. Ryba, C.S. Zuker: Mammalian sweet taste receptors, Cell 106, 381–390 (2001)CrossRefGoogle Scholar
  10. 45.10.
    K.L. Mueller, M.A. Hoon, I. Erlenbach, J. Chandrashekar, C.S. Zuker, N.J. Ryba: The receptors and coding logic for bitter taste, Nature 434(7030), 225–229 (2005)CrossRefGoogle Scholar
  11. 45.11.
    J. Chandrashekar, M.A. Hoon, N.J. Ryba, C.S. Zuker: The receptors and cells for mammalian taste, Nature 444, 288–294 (2006)CrossRefGoogle Scholar
  12. 45.12.
    V. Lyall, R.I. Alam, D.Q. Phan, G.L. Ereso, T.H. Phan, S.A. Malik, M.H. Montrose, S. Chu, G.L. Heck, G.M. Feldman, J.A. DeSimone: Decrease in rat taste receptor cell intracellular pH is the proximate stimulus in sour taste transduction, Am. J. Physiol. Cell Physiol. 281, C1005–C1013 (2001)Google Scholar
  13. 45.13.
    T.A. Gilbertson, S.D. Roper, S.C. Kinnamon: Proton currents through amiloride-sensitive Na+ channels in isolated hamster taste cells: Enhancement by vasopressin and cAMP, Neuron 10, 931–942 (1993)CrossRefGoogle Scholar
  14. 45.14.
    A.L. Huang, X. Chen, M.A. Hoon, J. Chandrashekar, W. Guo, D. Tränkner, N.J. Ryba, C.S. Zuker: The cells and logic for mammalian sour taste detection, Nature 442, 934–938 (2006)CrossRefGoogle Scholar
  15. 45.15.
    W. Lin, C.A. Burks, D.R. Hansen, S.C. Kinnamon, T.A. Gilbertson: Taste receptor cells express pH-sensitive leak K+ channels, J. Neurophysiol. 92, 2909–2919 (2004)CrossRefGoogle Scholar
  16. 45.16.
    M. Frank: An analysis of hamster afferent taste nerve response functions, J. Gen. Physiol. 61(5), 588–618 (1973)CrossRefGoogle Scholar
  17. 45.17.
    R.J. Contreras: Changes in gustatory nerve discharges with sodium deficiency: A single unit analysis, Brain Res. 121(2), 373–378 (1977)MathSciNetCrossRefGoogle Scholar
  18. 45.18.
    R.J. Contreras, M. Frank: Sodium deprivation alters neural responses to gustatory stimuli, J. Gen. Physiol. 73(5), 569–594 (1979)CrossRefGoogle Scholar
  19. 45.19.
    V. Danilova, G. Hellekant: Sense of taste in a New World monkey, the common marmoset. II. Link between behavior and nerve activity, J. Neurophysiol. 92(2), 1067–1076 (2004)CrossRefGoogle Scholar
  20. 45.20.
    G.Q. Zhao, Y. Zhang, M.A. Hoon, J. Chandrashekar, I. Erlenbach, N.J. Ryba, C.S. Zuker: The receptors for mammalian sweet and umami taste, Cell 115, 255–266 (2003)CrossRefGoogle Scholar
  21. 45.21.
    J. Chandrashekar, C. Kuhn, Y. Oka, D.A. Yarmolinsky, E. Hummler, N.J. Ryba, C.S. Zuker: The cells and peripheral representation of sodium taste in mice, Nature 464(7286), 297–301 (2010)CrossRefGoogle Scholar
  22. 45.22.
    T.A. Gilberston, J.D. Boughter, H. Zhang, D.V. Smith: Distribution of gustatory sensitivities in rat taste cells: Whole-cell responses to apical chemical stimulation, J. Neurosci. 21(13), 4931–4941 (2001)Google Scholar
  23. 45.23.
    A. Caicedo, K. Kim, S.D. Roper: Individual mouse taste cells respond to multiple chemical stimuli, J. Physiol. 544, 501–509 (2002)CrossRefGoogle Scholar
  24. 45.24.
    G.S. Doetsch, R.P. Erickson: Synaptic processing of taste-quality information in the nucleus tractus solitarius of the rate, J. Neurophysiol. 33(4), 490–507 (1970)Google Scholar
  25. 45.25.
    D.V. Smith, R.L. Van Buskirk, J.B. Travers, S.L. Bieber: Coding of taste stimuli by hamster brain stem neurons, J. Neurophysiol. 50(2), 541–558 (1983)Google Scholar
  26. 45.26.
    C.B. Halsell, S.P. Travers, J.B. Travers: Ascending and descending projections from the rostral nucleus of the solitary tract originate from separate neuronal populations, Neuroscience 72(1), 185–197 (1996)CrossRefGoogle Scholar
  27. 45.27.
    R.F. Lundy, R. Norgren: Activity in the hypothalamus, amygdala, and cortex generates bilateral and convergent modulation of pontine gustatory neurons, J. Neurophysiol. 91, 1143–1157 (2004)CrossRefGoogle Scholar
  28. 45.28.
    R.M. Beckstead, J.R. Morse, R. Norgren: The nucleus of the solitary tract in the monkey: Projections to the thalamus and brain stem nuclei, J. Comp. Neurol. 190(2), 259–282 (1980)CrossRefGoogle Scholar
  29. 45.29.
    A.C. Spector, S.P. Travers: The representation of taste quality in the mammalian nervous system, Behav. Cogn. Neurosci. Rev. 4(3), 143–191 (2005)CrossRefGoogle Scholar
  30. 45.30.
    P.M. Di Lorenzo, C.H. Lemon: Methodological considerations for electrophysiological recording and analysis of taste-responsive cells in the brain stem of the rat. In: Methods in Chemosensory Research, ed. by S.A. Simon, M.A.L. Nicolelis (CRC, New York 2001) pp. 293–324Google Scholar
  31. 45.31.
    B.P. Halpern, D.N. Tapper: Taste stimuli: Quality coding time, Science 171(977), 1256–1258 (1971)CrossRefGoogle Scholar
  32. 45.32.
    C.H. Lemon, D.B. Katz: The neural processing of taste, BMC Neuroscience 8(Suppl. 3), S5 (2007)CrossRefGoogle Scholar
  33. 45.33.
    L.A. Dinardo, J.B. Travers: Hypoglossal neural activity during ingestion and rejection in the awake rat, J. Neurophysiol. 72(3), 1181–1191 (1994)Google Scholar
  34. 45.34.
    J.R. Stapleton, M.L. Lavine, R.L. Wolpert, M.A.L. Nicolelis, S.A. Simon: Rapid taste responses in the gustatory cortex during licking, J. Neurosci. 26(15), 4126–4138 (2006)CrossRefGoogle Scholar
  35. 45.35.
    D.B. Katz, S.A. Simon, M.A.L. Nicolelis: Dynamic and multimodal responses of gustatory cortical neurons in awake rats, J. Neurosci. 21(12), 4478–4489 (2001)Google Scholar
  36. 45.36.
    R.M. Hallock, P.M. Di Lorenzo: Temporal coding in the gustatory system, Neurosci. Biobehav. Rev. 30, 1145–1160 (2006)CrossRefGoogle Scholar
  37. 45.37.
    M.B. Vogt, C.M. Mistretta: Convergence in mammalian nucleus of solitary tract during development and functional differentiation of salt taste circuits, J. Neurosci. 10, 3148–3157 (1990)Google Scholar
  38. 45.38.
    C.H. Lemon, D.V. Smith: Influence of response variability on the coding performance of central gustatory neurons, J. Neurosci. 26, 7433–7443 (2006)CrossRefGoogle Scholar
  39. 45.39.
    U.K. Kim, D. Drayna: Genetics of individual differences in bitter taste perception: Lessons from the PTC gene, Clin. Genet. 67, 275–280 (2005)CrossRefGoogle Scholar
  40. 45.40.
    L.C. Geran, S.P. Travers: Single neurons in the nucleus of the solitary tract respond selectively to bitter taste stimuli, J. Neurophysiol. 96(5), 2513–2527 (2006)CrossRefGoogle Scholar
  41. 45.41.
    L.C. Geran, S.P. Travers: Bitter-responsive gustatory neurons in the rat parabrachial nucleus, J. Neurophysiol. 101(3), 1598–1612 (2009)CrossRefGoogle Scholar
  42. 45.42.
    M.I. Harrer, S.P. Travers: Topographic organization of Fos-like immunoreactivity in the rostral nucleus of the solitary tract evoked by gustatory stimulation with sucrose and quinine, Brain Res. 711(1/2), 125–137 (1996)CrossRefGoogle Scholar
  43. 45.43.
    X. Chen, M. Gabitto, Y. Peng, N.J. Ryba, C.S. Zuker: A gustotopic map of taste qualities in the mammalian brain, Science 333(6047), 1262–1266 (2011)CrossRefGoogle Scholar
  44. 45.44.
    K. Nakamura, R. Norgren: Gustatory responses of neurons in the nucleus of the solitary tract of behaving rats, J. Neurophysiol. 66, 1232–1248 (1991)Google Scholar
  45. 45.45.
    J.-Y. Chen, J.D. Victor, P.M. Di Lorenzo: Temporal coding of intensity of NaCl and HCl in the nucleus of the solitary tract of the rat, J. Neurophysiol. 105(2), 697–711 (2011)CrossRefGoogle Scholar
  46. 45.46.
    J.D. Victor, K.P. Purpura: Nature and precision of temporal coding in visual cortex: A metric-space analysis, J. Neurophysiol. 76, 1310–1326 (1996)Google Scholar
  47. 45.47.
    J.D. Victor, K.P. Purpura: Metric-space analysis of spike trains: Theory, algorithms and application, Network 8, 127–164 (1997)CrossRefzbMATHGoogle Scholar
  48. 45.48.
    R.M. Bradley, H.M. Stedman, C.M. Mistretta: Superior laryngeal nerve response patterns to chemical stimulation of sheep epiglottis, Brain Res. 276(1), 81–93 (1983)CrossRefGoogle Scholar
  49. 45.49.
    T. Nagai, K. Ueda: Stochastic properties of gustatory impulse discharges in rat chorda tympani fibers, J. Neurophysiol. 45(3), 574–592 (1981)Google Scholar
  50. 45.50.
    H. Ogawa, M. Sato, S. Yamashita: Variability in impulse discharges in rat chorda tympani fibers in response to repeated gustatory stimulations, Physiol. Behav. 11(4), 469–479 (1973)CrossRefGoogle Scholar
  51. 45.51.
    H. Ogawa, S. Yamashita, M. Sato: Variation in gustatory nerve fiber discharge pattern with change in stimulus concentration and quality, J. Neurophysiol. 37(3), 443–457 (1974)Google Scholar
  52. 45.52.
    P.M. Di Lorenzo, J.S. Schwartzbaum: Coding of gustatory information in the pontine parabrachial nuclei of the rabbit: Magnitude of neural response, Brain Res. 251, 229–244 (1982)CrossRefGoogle Scholar
  53. 45.53.
    P.M. Di Lorenzo, J.D. Victor: Taste response variability and temporal coding in the nucleus of the solitary tract of the rat, J. Neurophysiol. 90, 1418–1431 (2003)CrossRefGoogle Scholar
  54. 45.54.
    A.T. Roussin, J.D. Victor, J.-Y. Chen, P.M. Di Lorenzo: Variability in responses and temporal coding of tastants of similar quality in the nucleus of the solitary tract of the rat, J. Neurophysiol. 99(2), 644–655 (2008)CrossRefGoogle Scholar
  55. 45.55.
    P.M. Di Lorenzo, S. Leshchinskiy, D.N. Moroney, J.M. Ozdoba: Making time count: Functional evidence for temporal coding of taste sensation, Behav. Neurosci. 123(1), 14–25 (2009)CrossRefGoogle Scholar
  56. 45.56.
    P.M. Di Lorenzo, R.M. Hallock, D.P. Kennedy: Temporal coding of sensation: Mimicking taste quality with electrical stimulation of the brain, Behav. Neurosci. 117(6), 1423–1433 (2003)CrossRefGoogle Scholar
  57. 45.57.
    P.M. Di Lorenzo, J.D. Victor: Neural coding mechanisms for flow rate in taste-responsive cells in the nucleus of the solitary tract of the rat, J. Neurophysiol. 97(2), 1857–1861 (2007)CrossRefGoogle Scholar
  58. 45.58.
    Y.K. Cho, C.S. Li, D.V. Smith: Gustatory projections from the nucleus of the solitary tract to the parabrachial nuclei in the hamster, Chem. Senses 27, 81–90 (2002)CrossRefGoogle Scholar
  59. 45.59.
    P.M. Di Lorenzo, S. Monroe: Transfer of information about taste from the nucleus of the solitary tract to the parabrachial nucleus of the pons, Brain Res. 763, 167–181 (1997)CrossRefGoogle Scholar
  60. 45.60.
    P.M. Di Lorenzo, D. Platt, J.D. Victor: Information processing in the parabrachial nucleus of the pons: Temporal relationships of input and output, Ann. N.Y. Acad. Sci. 1170, 365–371 (2009)CrossRefGoogle Scholar
  61. 45.61.
    A.M. Rosen, J.D. Victor, P.M. Di Lorenzo: Temporal coding of taste in the parabrachial nucleus of the pons of the rat, J. Neurophysiol. 105(4), 1889–1896 (2011)CrossRefGoogle Scholar
  62. 45.62.
    C.S. Li, D.V. Smith: Glutamate receptor antagonists block gustatory afferent input to the nucleus of the solitary tract, J. Neurophysiol. 77(3), 1514–1525 (1997)Google Scholar
  63. 45.63.
    D.V. Smith, C.S. Li: Tonic GABAergic inhibition of taste-responsive neurons in the nucleus of the solitary tract, Chem. Senses 23(2), 159–169 (1998)CrossRefGoogle Scholar
  64. 45.64.
    P.S. Lasiter, D.L. Kachele: Organization of GABA and GABA-transaminase containing neurons in the gustatory zone of the nucleus of the solitary tract, Brain Res. Bull. 21, 623–636 (1988)CrossRefGoogle Scholar
  65. 45.65.
    D.V. Smith, C.S. Li, B.J. Davis: Excitatory and inhibitory modulation of taste responses in the hamster brainstem, Ann. N.Y. Acad. Sci. 855, 450–456 (1998)CrossRefGoogle Scholar
  66. 45.66.
    M.S. King: Distribution of immunoreactive GABA and glutamate receptors in the gustatory portion of the nucleus of the solitary tract in rat, Brain Res. Bull. 60(3), 241–254 (2003)CrossRefGoogle Scholar
  67. 45.67.
    L. Wang, R.M. Bradley: Influence of GABA on neurons of the gustatory zone of the rat nucleus of the solitary tract, Brain Res. 616(1–2), 144–153 (1993)CrossRefGoogle Scholar
  68. 45.68.
    C.H. Lemon, P.M. Di Lorenzo: Effects of electrical stimulation of the chorda tympani nerve on taste responses in the nucleus of the solitary tract of the rat, J. Neurophysiol. 88, 2477–2489 (2002)CrossRefGoogle Scholar
  69. 45.69.
    A.M. Rosen, P.M. Di Lorenzo: Two types of inhibitory influences target different groups of taste-responsive cells in the nucleus of the solitary tract of the rat, Brain Res. 1275, 24–32 (2009)CrossRefGoogle Scholar
  70. 45.70.
    G. Grabauskas, R.M. Bradley: Ionic mechanism of GABAA biphasic synaptic potentials in gustatory nucleus of the solitary tract, Ann. N.Y. Acad. Sci. 855, 486–487 (1998)CrossRefGoogle Scholar
  71. 45.71.
    G. Grabauskas, R.M. Bradley: Potentiation of GABAergic synaptic transmission in the rostral nucleus of the solitary tract, Neuroscience 94(4), 1173–1182 (1999)CrossRefGoogle Scholar
  72. 45.72.
    G. Grabauskas, R.M. Bradley: Frequency-dependent properties of inhibitory synapses in the rostral nucleus of the solitary tract, J. Neurophysiol. 89(1), 199–211 (2003)CrossRefGoogle Scholar
  73. 45.73.
    C.H. Lemon, P.M. Di Lorenzo: Effects of electrical stimulation of the chorda tympani nerve on taste responses in the nucleus of the solitary tract of the rat, J. Neurophysiol. 88, 2477–2489 (2002)CrossRefGoogle Scholar
  74. 45.74.
    P.M. Di Lorenzo, C.H. Lemon, C.G. Reich: Dynamic coding of taste stimuli in the brain stem: Effects of brief pulses of taste stimuli on subsequent taste responses, J. Neurosci. 23, 8893–8902 (2003)Google Scholar
  75. 45.75.
    A.M. Rosen, A.R. Roussin, P.M. Di Lorenzo: Water as an independent taste modality, Front. Neurosci. 4, 175–185 (2010)CrossRefGoogle Scholar
  76. 45.76.
    A.M. Rosen, P.M. Di Lorenzo: Two types of inhibitory influences target different groups of taste-responsive cells in the nucleus of the solitary tract of the rat, Brain Res. 1275, 24–32 (2009)CrossRefGoogle Scholar
  77. 45.77.
    A.M. Rosen, H. Sichtig, J.D. Schaffer, P.M. Di Lorenzo: Taste-specific cell assemblies in a biologically informed model of the nucleus of the solitary tract, J. Neurophysiol. 104(1), 4–17 (2010)CrossRefGoogle Scholar
  78. 45.78.
    L.J. Eshelman: The CHC adaptive search algorithm: How to have safe search when engaging in nontraditional genetic recombination. In: Foundations of Genetic Algorithms, ed. by G.J. Rawlins (Morgan Kaufman, San Mateo 1991) pp. 265–283Google Scholar
  79. 45.79.
    T. Nomura, H. Ogawa: The taste and mechanical response properties of neurons in the parvicellular part of the thalamic posteromedial ventral nucleus of the rat, Neurosci. Res. 3(2), 91–105 (1985)CrossRefGoogle Scholar
  80. 45.80.
    J.V. Verhagen, B.K. Giza, T.R. Scott: Responses to taste stimulation in the ventroposteromedial nucleus of the thalamus in rats, J. Neurophysiol. 89(1), 265–275 (2003)CrossRefGoogle Scholar
  81. 45.81.
    T.R. Scott, R.P. Erickson: Synaptic processing of taste-quality information in thalamus of the rat, J. Neurophysiol. 34(5), 868–883 (1971)Google Scholar
  82. 45.82.
    T.C. Pritchard, R.B. Hamilton, R. Norgren: Neural coding of gustatory information in the thalamus of Macaca mulatta, J. Neurophysiol. 61(1), 1–14 (1989)Google Scholar
  83. 45.83.
    H. Ogawa, T. Nomura: Receptive field properties of thalamo-cortical taste relay neurons in the parvicellular part of the posteromedial ventral nucleus in rats, Exp. Brain Res. 73, 364–370 (1988)CrossRefGoogle Scholar
  84. 45.84.
    S. Monroe, P.M. Di Lorenzo: Taste responses in neurons in the nucleus of the solitary tract that do and do not project to the parabrachial pons, J. Neurophysiol. 74(1), 249–257 (1995)Google Scholar
  85. 45.85.
    A. Fontanini, D.B. Katz: State-dependent modulation of time-varying gustatory responses, J. Neurophysiol. 96(6), 3183–3193 (2006)CrossRefGoogle Scholar
  86. 45.86.
    S.E. Grossman, A. Fontanini, J.S. Wieskopf, D.B. Katz: Learning-related plasticity of temporal coding in simultaneously recorded amygdala-cortical ensembles, J. Neurosci. 28(11), 2864–2873 (2008)CrossRefGoogle Scholar
  87. 45.87.
    R. Gutierrez, S.A. Simon, M.A. Nicolelis: Licking-induced synchrony in the taste-reward circuit improves cue discrimination during learning, J. Neurosci. 30(1), 287–303 (2010)CrossRefGoogle Scholar
  88. 45.88.
    A. Carleton, R. Accolla, S.A. Simon: Coding in the mammalian gustatory system, Trends Neurosci. 33(7), 326–334 (2010)CrossRefGoogle Scholar
  89. 45.89.
    M. Sugita, Y. Shiba: Genetic tracing shows segregation of taste neuronal circuitries for bitter and sweet, Science 309(5735), 781–785 (2005)CrossRefGoogle Scholar
  90. 45.90.
    R. Accolla, B. Bathellier, C.C. Petersen, A. Carleton: Differential spatial representation of taste modalities in the rat gustatory cortex, J. Neurosci. 27(6), 1396–1404 (2007)CrossRefGoogle Scholar
  91. 45.91.
    T. Yamamoto, N. Yuyama, T. Kato, Y. Kawamura: Gustatory responses of cortical neurons in rats: I. Response characteristics, J. Neurophysiol. 51, 616–635 (1984)Google Scholar
  92. 45.92.
    T. Yamamoto, R. Matsuo, Y. Kiyomitsu, R. Kitamura: Sensory inputs from the oral region to the cerebral cortex in behaving rats: An analysis of unit responses in cortical somatosensory and taste areas during ingestive behavior, J. Neurophysiol. 60, 1303–1321 (1988)Google Scholar
  93. 45.93.
    A. Fontanini, D.B. Katz: Behavioral modulation of gustatory cortical activity, Ann. N.Y. Acad. Sci. 1170, 403–406 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2014

Authors and Affiliations

  1. 1.Department of NeurobiologyStony Brook UniversityStony BrookUSA
  2. 2.Department of PsychologyBinghamton UniversityBinghamtonUSA

Personalised recommendations