Skip to main content

Recurrence Plots and the Analysis of Multiple Spike Trains

  • Chapter
Springer Handbook of Bio-/Neuroinformatics

Part of the book series: Springer Handbooks ((SHB))

Abstract

Spike trains are difficult to analyze and compare because they are point processes, for which relatively few methods of time series analysis exist. Recently, several distance measures between pairs of spike train windows (segments) have been proposed. Such distance measures allow one to draw recurrence plots, two-dimensional graphs for visualizing dynamical changes of time series data, which in turn allows investigation of many spike train properties, such as serial dependence, chaos, and synchronization. Here, we review some definitions of distances between windows of spike trains, explain methods developed on recurrence plots, and illustrate how these plots reveal spike train properties by analysis of simulated and experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E.N. Brown, R.E. Kass, P.P. Mitra: Multiple neural spike train data analysis: State-of-the-art and future challenges, Nat. Neurosci. 7, 456–461 (2004)

    Article  Google Scholar 

  2. J.D. Victor, K.P. Purpura: Metric-space analysis of spike trains: Theory, algorithms and application, Network 8, 127–164 (1997)

    Article  MATH  Google Scholar 

  3. M.C.W. van Rossum: A novel spike distance, Neural Comput. 13, 751–763 (2001)

    Article  MATH  Google Scholar 

  4. Y. Hirata, K. Aihara: Representing spike trains using constant sampling intervals, J. Neurosci. Methods 183, 277–286 (2009)

    Article  Google Scholar 

  5. J.-P. Eckmann, S.O. Kamphorst, D. Ruelle: Recurrence plots of dynamical systems, Europhys. Lett. 5, 973–977 (1987)

    Article  Google Scholar 

  6. N. Marwan, M.C. Romano, M. Thiel, J. Kurths: Recurrence plots for the analysis of complex systems, Phys. Rep. 438, 237–329 (2007)

    Article  MathSciNet  Google Scholar 

  7. M. Thiel, M.C. Romano, J. Kurths, M. Rolfs, R. Kliegl: Generating surrogates from recurrences, Philos. Trans. R. Soc. A 366, 545–557 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Y. Hirata, S. Horai, K. Aihara: Reproduction of distance matrices from recurrence plots and its applications, Eur. Phys. J. Spec. Top. 164, 13–22 (2008)

    Article  Google Scholar 

  9. P. Faure, H. Korn: A new method to estimate the Kolmogorow entropy from recurrence plots: Its application to neuronal signals, Physica D 122, 265–279 (1998)

    Article  Google Scholar 

  10. M. Thiel, M.C. Romano, P.L. Read, J. Kurths: Estimation of dynamical invariants without embedding by recurrence plots, Chaos 14, 234–243 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Y. Hirata, K. Aihara: Statistical tests for serial dependence and laminarity on recurrence pltos, Int. J. Bifur. Chaos 21, 1077–1084 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Y. Hirata, K. Aihara: Devaneyʼs chaos on recurrence plots, Phys. Rev. 82, 036209 (2010)

    Google Scholar 

  13. J.P. Zbilut, A. Giuliani, C.L. Webber Jr.: Detecting deterministic signals in exceptionally noisy environments using cross-recurrence quantification, Phys. Lett. A 246, 122–128 (1998)

    Article  Google Scholar 

  14. N. Marwan, J. Kurths: Nonlinear analysis of bivariate data with cross recurrence plots, Phys. Lett. A 302, 299–307 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. M.C. Romano, M. Thiel, J. Kurths, W. von Bloh: Multivariate recurrence plots, Phys. Lett. A 330, 214–223 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Y. Hirata, K. Aihara: Identifying hidden common causes from bivariate time series: A method using recurrence plots, Phys. Rev. E 81, 016203 (2010)

    Article  Google Scholar 

  17. M.C. Romano, M. Thiel, J. Kurths, C. Grebogi: Estimation of the direction of the coupling by conditional probabilities of recurrence, Phys. Rev. E 76, 036211 (2007)

    Article  MathSciNet  Google Scholar 

  18. J.B. Tenembaum, V. de Silva, J.C. Langford: A global geometric framework for nonlinear dimensionality reduction, Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  19. H. Suzuki, K. Aihara, J. Murakami, T. Shimozawa: Analysis of neural spike trains with interspike interval reconstruction, Biol. Cybern. 82, 305–311 (2000)

    Article  MATH  Google Scholar 

  20. O.E. Rossler: An equation for hyperchaos, Phys. Lett. A 71, 155–157 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  21. E. Salinas, L.F. Abbott: Vector reconstruction from firing rates, J. Comput. Neurosci. 1, 89–107 (1994)

    Article  MATH  Google Scholar 

  22. E.N. Lorenz: Deterministic nonperiodic flow, J. Atmos. Sci. 20, 130–141 (1963)

    Article  Google Scholar 

  23. T.A. Blenkinsop, E.J. Lang: Block of inferior olive gap junctional coupling decreases Purkinje cell complex spike synchrony and rhythmicity, J. Neurosci. 26, 1739–1748 (2006)

    Article  Google Scholar 

  24. K. Sasaki, J.M. Bower, R. Llinas: Multiple Purkinje cell recording in rodent cerebellar cortex, Eur. J. Neurosci. 1, 572–586 (1989)

    Article  Google Scholar 

  25. E.J. Lang, I. Sugihara, J.P. Welsh, R. Llinás: Patterns of spontaneous Purkinje cell complex spike activity in the awake rat, J. Neurosci. 19, 2728–2739 (1999)

    Google Scholar 

  26. N. Schweihofer, K. Doya, H. Fukai, J.V. Chiron, T. Furukawa, M. Kawato: Chaos may enhance information transmission in the inferior olive, Proc. Natl. Acad. Sci. USA 101, 4655–4660 (2004)

    Article  Google Scholar 

  27. J. Nawrath, M.C. Romano, M. Thiel, I.Z. Kiss, M. Wickramasinghe, J. Timmer, J. Kurths, B. Schelter: Distinguishing direct from indirect interactions in oscillatory networks with multiple time scales, Phys. Rev. Lett. 104, 038701 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yoshito Hirata , Eric J. Lang or Kazuyuki Aihara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag

About this chapter

Cite this chapter

Hirata, Y., Lang, E.J., Aihara, K. (2014). Recurrence Plots and the Analysis of Multiple Spike Trains. In: Kasabov, N. (eds) Springer Handbook of Bio-/Neuroinformatics. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30574-0_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30574-0_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30573-3

  • Online ISBN: 978-3-642-30574-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics