Advertisement

Nutrigenomics

  • Hylde Zirpoli
  • Mariella Caputo
  • Mario F. Tecce

Abstract

The entire complex of molecular processes of the human organism results from endogenous physiological execution of the information encoded in the genome but is also influenced by exogenous factors, which include those originating from nutrition as major agents. The assimilation of nutrient molecules within the human body continuously allows homeostatic reconstitution of its qualitative and quantitative composition but also takes part in physiological changes of body growth and adaptation to particular situations. Nevertheless, in addition to replacing material and energetic losses, nutritional intake also provides bioactive molecules, which are selectively able to modulate specific metabolic pathways, noticeably affecting the risk of cardiovascular and neoplastic diseases, which are the major cause of mortality in developed countries. Numerous bioactive nutrients are being progressively identified and their chemopreventive effects are being described at clinical and molecular mechanism levels. All omics technologies (such as transcriptomics, proteomics, and metabolomics) allow systematic analyses to study the effect of dietary bioactive molecules on the totality of molecular processes.

Since each nutrient might also have specific effects on individually different genomes, nutrigenomic and nutrigenetic analysis data can be distinguished by two different observational views: 1) the effects of the whole diet and of specific nutrients on genes, proteins, metabolic pathways, and metabolites; and 2) the effects of specific individual genomes on the biological activity of nutritional intake and of specific nutrients. Nutrigenomic knowledge of physiologic status and disease risk will provide the development of better diagnostic procedures as well as new therapeutic strategies specifically targeted to nutritionally relevant processes.

Keywords

Nuclear Magnetic Resonance Spectroscopy Nutritional Intake System Biology Markup Language Diallyl Disulfide Omics Technology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

2-D

two-dimensional

BiNGO

biological networks gene ontology

CE

capillary electrophoresis

COPASI

complexpathway simulator

ChIP

chromatin immunoprecipitation

CoA

coenzyme A

DHA

docosahexaenoic acid

DNA

deoxyribonucleic acid

EPA

eicosapentaenoic acid

ERK

extracellular signal-regulated kinase

FT-ICR

Fourier-transform ion cyclotron resonance

FT-IR

Fourier transform infrared

FT

Fourier transform

GC–MS

gas chromatography–mass spectrometry

GC

Granger causality

GO

gene ontology

HMG

β-hydroxy-β-methyl-glutaryl

HOSF

high-oleic acid sunflower oil

HPLC

high-performance liquid chromatography

ICR-FT

ion-cyclotron resonance Fourier transform

ICR

ion cyclotron resonance

LC-MS

liquid chromatography-mass spectrometry

LC

liquid chromatography

LCD

low-calorie diet

MALDI

matrix assisted laser desorption/ionization

MS

mass spectrometry

MudPIT

multidimensional protein identification technology

NMR

nuclear magnetic resonance

ODE

ordinary differential equation

PBMC

peripheral blood mononuclear cell

PCR

polymerase chain reaction

PKU

phenylketonuria

PPARα

peroxisome proliferator-activated receptor-α

PUFA

polyunsaturated fatty acid

RNA

ribonucleic acid

SBGN

Systems Biology Graphical Notation

SBML

systems biology markup language

SNP

single-nucleotide polymorphism

SWB

systems biology workbench

TG

triacylglyceride

TOF

time-of-flight

UPLC

ultra-performance liquid chromatography

cDNA

complementary DNA

cRNA

complementary RNA

mRNA

messenger RNA

miRNA

microRNA

References

  1. 31.1.
    J.M. Ordovas, D. Corella: Nutritional genomics, Annu. Rev. Genomics Hum. Genet. 5, 71–118 (2004)CrossRefGoogle Scholar
  2. 31.2.
    B. Armstrong, R. Doll: Environmental factors and cancer incidence and mortality in different countries, with special reference to dietary practices, Int. J. Cancer 15, 617–631 (1975)CrossRefGoogle Scholar
  3. 31.3.
    M.L. Neuhouser, R.E. Patterson, I.B. King, N.K. Horner, J.W. Lampe: Selected nutritional biomarkers predict diet quality, Public Health Nutr. 6, 703–709 (2003)CrossRefGoogle Scholar
  4. 31.4.
    S. Eilat-Adar, U. Goldbourt: Nutritional recommendations for preventing coronary heart disease in women: Evidence concerning whole foods and supplements, Nutr. Metab. Cardiovasc. Dis. 20(6), 459–466 (2010)CrossRefGoogle Scholar
  5. 31.5.
    J.A. Milner: Molecular targets for bioactive food components, J. Nutr. 134(9), 2492S–2498S (2004)Google Scholar
  6. 31.6.
    D. Eletto, A. Leone, M. Bifulco, M.F. Tecce: Effect of unsaturated fat intake from mediterranean diet on rat liver mRNA expression profile: Selective modulation of genes involved in lipid metabolism, Nutr. Metab. Cardiovasc. Dis. 15, 13–23 (2005)CrossRefGoogle Scholar
  7. 31.7.
    S.A. Lee: Gene-diet interaction on cancer risk in epidemiological studies, J. Prev. Med. Public Health 42(6), 360–370 (2009)CrossRefGoogle Scholar
  8. 31.8.
    M.A. Roberts, D.M. Mutch, J.B. German: Genomics: Food and nutrition, Curr. Opin. Biotechnol. 12, 516–522 (2001)CrossRefGoogle Scholar
  9. 31.9.
    W.E. Evans, J.A. Johnson: Pharmacogenomics: The inherited basis for interindividual differences in drug response, Annu. Rev. Genomics Hum. Genet. 2, 9–39 (2001)CrossRefGoogle Scholar
  10. 31.10.
    W.E. Evans, H.L. McLeod: Pharmacogenomics – drug disposition, drug targets, and side effects, N. Engl. J. Med. 348, 538–549 (2003)CrossRefGoogle Scholar
  11. 31.11.
    J. Kaput: Diet-disease gene interactions, Nutrition 20, 26–31 (2004)CrossRefGoogle Scholar
  12. 31.12.
    I.A. Brouwer, P.L. Zock, L.G. van Amelsvoort, M.B. Katan, E.G. Schouten: Association between n-3 fatty acid status in blood and electrocardiographic predictors of arrhythmia risk in healthy volunteers, Am. J. Cardiol. 89, 629–631 (2002)CrossRefGoogle Scholar
  13. 31.13.
    F.M. Sacks, M. Katan: Randomized clinical trials on the effects of dietary fat and carbohydrate on plasma lipoproteins and cardiovascular disease, Am. J. Med. 113, S13–S24 (2002)Google Scholar
  14. 31.14.
    L. Ohlsson: Dairy products and plasma cholesterol levels, Food Nutr. Res. 54, 5124 (2010)Google Scholar
  15. 31.15.
    G.A. Francis, E. Fayard, F. Picard, J. Auwerx: Nuclear receptors and the control of metabolism, Annu. Rev. Physiol. 65, 261–311 (2002)CrossRefGoogle Scholar
  16. 31.16.
    W.C. Willett: Nutritional epidemiology issues in chronic disease at the turn of the century, Epidemiol. Rev. 22, 82–86 (2000)CrossRefGoogle Scholar
  17. 31.17.
    G.A. Churchill: Fundamentals of experimental design for cDNA microarrays, Nat. Genet. 32, 490–495 (2002)CrossRefGoogle Scholar
  18. 31.18.
    C.K. Lee, D.B. Allison, J. Brand, R. Weindruch, T.A. Prolla: Transcriptional profiles associated with aging and middle age-onset caloric restriction in mouse hearts, Proc. Natl. Acad. Sci. USA 99, 14988–14993 (2002)CrossRefGoogle Scholar
  19. 31.19.
    S.X. Cao, J.M. Dhahbi, P.L. Mote, S.R. Spindler: Genomic profiling of short- and long-term caloric restriction effects in the liver of aging mice, Proc. Natl. Acad. Sci. USA 98, 10630–10635 (2001)CrossRefGoogle Scholar
  20. 31.20.
    J. Xiao, S. Gregersen, M. Kruhøffer, S.B. Pedersen, T.F. Ørntoft, K. Hermansen: The effect of chronic exposure to fatty acids on gene expression in clonal insulin-producing cells: Studies using high density oligonucleotide microarray, Endocrinology 142, 4777–4784 (2001)CrossRefGoogle Scholar
  21. 31.21.
    J.H. Park, J. Ahn, S. Kim, D.Y. Kwon, Y.T. Ha: Murine hepatic miRNAs expression and regulation of gene expression in diet-induced obese mice, Mol. Cells 31(1), 33–38 (2010)CrossRefGoogle Scholar
  22. 31.22.
    B.D. Reed, A.E. Charos, A.M. Szekely, S.M. Weissman, M. Snyder: Genome-wide occupancy of SREBP1 and its partners NFY and SP1 reveals novel functional roles and combinatorial regulation of distinct classes of genes, PLoS Genetics 4(7), e1000133 (2008)CrossRefGoogle Scholar
  23. 31.23.
    W.W. Grody: Molecular genetic risk screening, Annu. Rev. Med. 54, 473–490 (2003)CrossRefGoogle Scholar
  24. 31.24.
    R. Sachidanandam, D. Weissman, S.C. Schmidt, J.M. Kakol, L.D. Stein, G. Marth, S. Sherry, J.C. Mullikin, B.J. Mortimore, D.L. Willey, S.E. Hunt, C.G. Cole, P.C. Coggill, C.M. Rice, Z. Ning, J. Rogers, D.R. Bentley, P.Y. Kwok, E.R. Mardis, R.T. Yeh, B. Schultz, L. Cook, R. Davenport, M. Dante, L. Fulton, L. Hillier, R.H. Waterston, J.D. McPherson, B. Gilman, S. Schaffner, W.J. Van Etten, D. Reich, J. Higgins, M.J. Daly, B. Blumenstiel, J. Baldwin, N. Stange-Thomann, M.C. Zody, L. Linton, E.S. Lander, D. Altshuler: International SNP map working group: A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms, Nature 409, 928–933 (2001)CrossRefGoogle Scholar
  25. 31.25.
    N. Blau, F.J. van Spronsen, H.L. Levy: Phenylketonuria, Lancet 376(9750), 1417–1427 (2010)CrossRefGoogle Scholar
  26. 31.26.
    P. Terry, P. Lichtenstein, M. Feychting, A. Ahlbom, A. Wolk: Fatty fish consumption and risk of prostate cancer, Lancet 357(9270), 1764–1766 (2001)CrossRefGoogle Scholar
  27. 31.27.
    A. Morise, C. Thomas, J.F. Landrier, P. Besnard, D. Hermier: Hepatic lipid metabolism response to dietary fatty acids is differently modulated by PPARalpha in male and female mice, Eur. J. Nutr. 48(8), 465–473 (2009)CrossRefGoogle Scholar
  28. 31.28.
    T. Dreja, Z. Jovanovic, A. Rasche, R. Kluge, R. Herwig, Y.C. Tung, H.G. Joost, G.S. Yeo, H. Al-Hasani: Diet-induced gene expression of isolated pancreatic islets from a polygenic mouse model of the metabolic syndrome, Diabetologia 53(2), 309–320 (2010)CrossRefGoogle Scholar
  29. 31.29.
    C. Ness, C.M. Chambers: Feedback and hormonal regulation of hepatic 3-hydroxy-3-methylglutaryl coenzyme a reductase: The concept of cholesterol buffering capacity gene, Proc. Soc. Exp. Biol. Med. 224(1), 8–19 (2000)CrossRefGoogle Scholar
  30. 31.30.
    S.K. Cheema, M.T. Clandinin: Dietary fat-induced suppression of lipogenic enzymes in B/B rats during the development of diabetes, Lipids 35(4), 421–425 (2000)CrossRefGoogle Scholar
  31. 31.31.
    G. Schmitz, J. Ecker: The opposing effects of n-3 and n-6 fatty acids, Prog. Lipid Res. 47(2), 147–155 (2008)CrossRefGoogle Scholar
  32. 31.32.
    R.S. Chapkin, W. Kim, J.R. Lupton, D.N. McMurray: Dietary docosahexaenoic and eicosapentaenoic acid: Emerging mediators of inflammation, Prostaglandins Leukot. Essent. Fat. Acids 81(2–3), 187–191 (2009)CrossRefGoogle Scholar
  33. 31.33.
    M. Bouwens, O. van de Rest, N. Dellschaft, M.G. Bromhaar, L.C. de Groot, J.M. Geleijnse, M. Müller, L.A. Afman: Fish-oil supplementation induces antiinflammatory gene expression profiles in human blood mononuclear cells, Am. J. Clin. Nutr. 90(2), 415–424 (2009)CrossRefGoogle Scholar
  34. 31.34.
    M. Bünger, G.J. Hooiveld, S. Kersten, M. Müller: Exploration of PPAR functions by microarray technology – a paradigm for nutrigenomics, Biochim. Biophys. Acta 1771(8), 1046–1064 (2007)CrossRefGoogle Scholar
  35. 31.35.
    J.P. Cobb, M.N. Mindrinos, C. Miller-Graziano, S.E. Calvano, H.V. Baker, W. Xiao, K. Laudanski, B.H. Brownstein, C.M. Elson, D.L. Hayden, D.N. Herndon, S.F. Lowry, R.V. Maier, D.A. Schoenfeld, L.L. Moldawer, R.W. Davis, R.G. Tompkins, H.V. Baker, P. Bankey, T. Billiar, B.H. Brownstein, S.E. Calvano, D. Camp, I. Chaudry, J.P. Cobb, R.W. Davis, C.M. Elson, B. Freeman, R. Gamelli, N. Gibran, B. Harbrecht, D.L. Hayden, W. Heagy, D. Heimbach, D.N. Herndon, J. Horton, J. Hunt, K. Laudanski, J. Lederer, S.F. Lowry, R.V. Maier, J. Mannick, B. McKinley, C. Miller-Graziano, M.N. Mindrinos, J. Minei, L.L. Moldawer, E. Moore, F. Moore, R. Munford, A. Nathens, G. Oʼkeefe, G. Purdue, L. Rahme, D. Remick, M. Sailors, D.A. Schoenfeld, M. Shapiro, G. Silver, R. Smith, G. Stephanopoulos, G. Stormo, R.G. Tompkins, M. Toner, S. Warren, M. West, S. Wolfe, W. Xiao, V. Young: Inflammation and Host Response to Injury Large-Scale Collaborative Research Program: Application of genome-wide expression analysis to human health and disease, Proc. Natl. Acad. Sci. USA 102, 4801–4806 (2005)CrossRefGoogle Scholar
  36. 31.36.
    E. Goyenechea, A.B. Crujeiras, I. Abete, J.A. Martínez: Expression of two inflammation-related genes (RIPK3 and RNF216) in mononuclear cells is associated with weight-loss regain in obese subjects, J. Nutrigenet. Nutrigenomics 2(2), 78–84 (2009)CrossRefGoogle Scholar
  37. 31.37.
    S.P. Weisberg, D. McCann, M. Desai, M. Rosenbaum, R.L. Leibel, A.W. Ferrante Jr: Obesity is associated with macrophage accumulation in adipose tissue, J. Clin. Invest. 112, 1796–1808 (2003)CrossRefGoogle Scholar
  38. 31.38.
    K.J. Martin, E. Graner, Y. Li, L.M. Price, B.M. Kritzman, M.V. Fournier, E. Rhei, A.B. Pardee: High-sensitivity array analysis of gene expression for the early detection of disseminated breast tumor cells in peripheral blood, Proc. Natl. Acad. Sci. USA 98, 2646–2651 (2001)CrossRefGoogle Scholar
  39. 31.39.
    A.R. Whitney, M. Diehn, S.J. Popper, A.A. Alizadeh, J.C. Boldrick, D.A. Relman, P.O. Brown: Individuality and variation in gene expression patterns in human blood, Proc. Natl. Acad. Sci. USA 100, 1896–1901 (2003)CrossRefGoogle Scholar
  40. 31.40.
    J. Quackenbush: Computational Approaches to Analysis of DNA Microarray Data, IMIA Yearbook Med. Inform. (Schattauer, Stuttgart 2006) pp. 91–103Google Scholar
  41. 31.41.
    P. Wai-Nang Lee, W. Vay Liang: Go. Nutrient-gene interaction: Tracer-based metabolomics, J. Nutr. 135(12 Suppl), 3027S–3032S (2005)Google Scholar
  42. 31.42.
    M.J. Gibney, M. Walsh, L. Brennan, H.M. Roche, B. German, B. van Ommen: Metabolomics in human nutrition: Opportunities and challenges, Am. J. Clin. Nutr. 82, 497–503 (2005)Google Scholar
  43. 31.43.
    K. Hollywood, D.R. Brison, R. Goodacre: Metabolomics: Current technologies and future trends, Proteomic 6, 4716–4723 (2006)CrossRefGoogle Scholar
  44. 31.44.
    U. Paolucci, K.E. Vigneau-Callahan, H. Shi, W.R. Matson, B.S. Kristal: Development of biomarkers based on diet-dependent metabolic serotypes: Characteristics of component-based models of metabolic serotypes, OMICS 8(3), 221–238 (2004)CrossRefGoogle Scholar
  45. 31.45.
    J.C. Lindon, E. Holmes, J.K. Nicholson: Metabonomics techniques and applications to pharmaceutical research and development, Pharm. Res. 23(6), 1075–1088 (2006)CrossRefGoogle Scholar
  46. 31.46.
    H. Tsutsui, T. Maeda, T. Toyoʼoka, J.Z. Min, S. Inagaki, T. Higashi, Y. Kagawa: Practical analytical approach for the identification of biomarker candidates in prediabetic state based upon metabonomic study by ultraperformance liquid chromatography coupled to electrospray ionization time-of-flight mass spectrometry, J. Proteome Res. 9(8), 3912–3922 (2010)CrossRefGoogle Scholar
  47. 31.47.
    J.L. Griffin: Understanding mouse models of disease through metabolomics, Curr. Opin. Chem. Biol. 10, 309–315 (2006)CrossRefGoogle Scholar
  48. 31.48.
    C. Gieger, L. Geistlinger, E. Altmaier, M. Hrabé de Angelis, F. Kronenberg, T. Meitinger, H.W. Mewes, H.E. Wichmann, K.M. Weinberger, J. Adamski, T. Illig, K. Suhre: Genetics meets metabolomics: A genome-wide association study of metabolite profiles in human serum, PLoS Genetics 4(11), e1000282 (2008)CrossRefGoogle Scholar
  49. 31.49.
    A. Kotronen, V.R. Velagapudi, L. Yetukuri, J. Westerbacka, R. Bergholm, K. Ekroos, J. Makkonen, M.R. Taskinen, M. Oresic, H. Yki-Järvinen: Serum saturated fatty acids containing triacylglycerols are better markers of insulin resistance than total serum triacylglycerol concentrations, Diabetologia 52(4), 684–690 (2009)CrossRefGoogle Scholar
  50. 31.50.
    M.C. Walsh, L. Brennan, J.P.G. Malthouse, H.M. Roche, M.J. Gibney: Effect of acute dietary standardization on the urinary, plasma, and salivary metabolomic profiles of healthy humans, Am. J. Clin. Nutr. 84(3), 531e9 (2006)Google Scholar
  51. 31.51.
    T.K. Mao, J. van de Water, C.L. Keen, H.H. Schmitz, M.E. Gershwi: Modulation of TNF-alpha secretion in peripheral blood mononuclear cells by cocoa flavanols and procyanidins, Dev. Immunol. 9(3), 135–141 (2002)CrossRefGoogle Scholar
  52. 31.52.
    E.M. Lenz, J. Bright, I.D. Wilson, A. Hughes, J. Morrisson, H. Lindberg, A. Lockton: Metabonomics, dietary influences and cultural differences: A 1H NMR-based study of urine samples obtained from healthy British and Swedish subjects, J. Pharm. Biomed. Anal. 36(4), 841–849 (2004)CrossRefGoogle Scholar
  53. 31.53.
    M. Lankinen, U. Schwab, P.V. Gopalacharyulu, T. Seppänen-Laakso, L. Yetukuri, M. Sysi-Aho, P. Kallio, T. Suortti, D.E. Laaksonen, H. Gylling, K. Poutanen, M. Kolehmainen, M. Oresic: Dietary carbohydrate modification alters serum metabolic profiles in individuals with the metabolic syndrome, Nutr. Metab. Cardiovasc. Dis. 20(4), 249–257 (2010)CrossRefGoogle Scholar
  54. 31.54.
    M. Lankinen, U. Schwab, A. Erkkilä, T. Seppänen-Laakso, M.L. Hannila, H. Mussalo, S. Lehto, M. Uusitupa, H. Gylling, M. Oresic: Fatty fish intake decreases lipids related to inflammation and insulin signaling – a lipidomics approach, PLoS One 4(4), e5258 (2009)CrossRefGoogle Scholar
  55. 31.55.
    A. Miccheli, F. Marini, G. Capuani, A.T. Miccheli, M. Delfini, M.E. Di Cocco, C. Puccetti, M. Paci, M. Rizzo, A. Spataro: The influence of a sports drink on the postexercise metabolism of elite athletes as investigated by NMR-based metabolomics, J. Am. Coll. Nutr. 28(5), 553–564 (2009)CrossRefGoogle Scholar
  56. 31.56.
    C.L. de Hoog, M. Mann: Proteomics, Annu. Rev. Genomics Hum. Genet. 5, 267–293 (2004)CrossRefGoogle Scholar
  57. 31.57.
    R.A. Saleem, R.S. Rogers, A.V. Ratushny, D.J. Dilworth, P.T. Shannon, D. Shteynberg, Y. Wan, R.L. Moritz, A.I. Nesvizhskii, R.A. Rachubinski, J.D. Aitchison: Integrated phosphoproteomics analysis of a signaling network governing nutrient response and peroxisome induction, Mol. Cell Proteomics 9(9), 2076–2088 (2010)CrossRefGoogle Scholar
  58. 31.58.
    S. Pan, R. Chen, D.A. Crispin, D. May, T. Stevens, M.W. McIntosh, M.P. Bronner, A. Ziogas, H. Anton-Culver, T.A. Brentnall: Protein alterations associated with pancreatic cancer and chronic pancreatitis found in human plasma using global quantitative proteomics profiling, J. Proteome Res. 10(5), 2359–2376 (2011)CrossRefGoogle Scholar
  59. 31.59.
    B. Cañas, D. López-Ferrer, A. Ramos-Fernández, E. Camafeita, E. Calvo: Mass spectrometry technologies for proteomics, Brief. Funct. Genomic Proteomic 4(4), 295–320 (2006)CrossRefGoogle Scholar
  60. 31.60.
    M. Kussmann, L. Krause, W. Siffert: Nutrigenomics: Where are we with genetic and epigenetic markers for disposition and susceptibility?, Nutr. Rev. 68(Suppl. 1), S38–S47 (2010)CrossRefGoogle Scholar
  61. 31.61.
    M. Kussmann, A. Panchaud, M. Affolter: Proteomics in nutrition: Status quo and outlook for biomarkers and bioactives, J. Proteome Res. 9, 4876–4887 (2010)CrossRefGoogle Scholar
  62. 31.62.
    L. Marvin-Guy, L.V. Lopes, M. Affolter, M.C. Courtet-Compondu, S. Wagnière, G.E. Bergonzelli, L.B. Fay, M. Kussmann: Proteomics of the rat gut: Analysis of the myenteric plexus-longitudinal muscle preparation, Proteomics 5(10), 2561–2569 (2005)CrossRefGoogle Scholar
  63. 31.63.
    G. Breikers, S.G. van Breda, F.G. Bouwman, M.H. van Herwijnen, J. Renes, E.C. Mariman, J.C. Kleinjans, J.H. van Delft: Potential protein markers for nutritional health effects on colorectal cancer in the mouse as revealed by proteomics analysis, Proteomics 6(9), 2844–2852 (2006)CrossRefGoogle Scholar
  64. 31.64.
    S. Tan, T.K. Seow, R.C. Liang, S. Koh, C.P. Lee, M.C. Chung, S.C. Hooi: Proteome analysis of butyrate-treated human colon cancer cells (HT-29), Int. J. Cancer 98(4), 523–531 (2002)CrossRefGoogle Scholar
  65. 31.65.
    A. Herzog, B. Kindermann, F. Döring, H. Daniel, U. Wenzel: Pleiotropic molecular effects of the pro-apoptotic dietary constituent flavone in human colon cancer cells identified by protein and mRNA expression profiling, Proteomics 4(8), 2455–2464 (2004)CrossRefGoogle Scholar
  66. 31.66.
    H. tom Dieck, F. Döring, D. Fuchs, H.P. Roth, H. Daniel: Transcriptome and proteome analysis identifies the pathways that increase hepatic lipid accumulation in zinc-deficient rats, J. Nutr. 135(2), 199–205 (2005)Google Scholar
  67. 31.67.
    L. Zhang, G. Perdomo, D.H. Kim, S. Qu, S. Ringquist, M. Trucco, H.H. Dong: Proteomic analysis of fructose-induced fatty liver in hamsters, Metabolism 57(8), 1115–1124 (2008)CrossRefGoogle Scholar
  68. 31.68.
    L.M. Knowles, J.A. Milner: Diallyl disulfide induces ERK phosphorylation and alters gene expression profiles in human colon tumor cells, J. Nutr. 133, 2901–2906 (2003)Google Scholar
  69. 31.69.
    C.D. Davis, J. Milner: Frontiers in nutrigenomics, proteomics, metabolomics and cancer prevention, Mutat. Res. 551, 51–64 (2004)CrossRefGoogle Scholar
  70. 31.70.
    G. Panagiotou, J. Nielsen: Nutritional systems biology: Definitions and approaches, Annu. Rev. Nutr. 29, 329–339 (2009)CrossRefGoogle Scholar
  71. 31.71.
    T. Ideker, T. Galitski, L. Hood: A new approach to decoding life: Systems biology, Annu. Rev. Genomics Hum. Genet. 2, 343–372 (2001)CrossRefGoogle Scholar
  72. 31.72.
    H. Kitano: Systems biology: A brief overview, Science 295(5560), 1662–1664 (2002)CrossRefGoogle Scholar
  73. 31.73.
    F. Desiere: Towards a systems biology understanding of human health: Interplay between genotype, environment and nutrition, Biotechnol. Annu. Rev. 10, 51–84 (2004)CrossRefGoogle Scholar
  74. 31.74.
    M. Hucka, A. Finney, B.J. Bornstein, S.M. Keating, B.E. Shapiro, J. Matthews, B.L. Kovitz, M.J. Schilstra, A. Funahashi, J.C. Doyle, H. Kitano: Evolving a lingua franca and associated software infrastructure for computational systems biology: The systems biology markup language (SBML) project, Syst. Biol. 1(1), 41–53 (2004)CrossRefGoogle Scholar
  75. 31.75.
    N. Le Novère, M. Hucka, H. Mi, S. Moodie, F. Schreiber, A. Sorokin, E. Demir, K. Wegner, M.I. Aladjem, S.M. Wimalaratne, F.T. Bergman, R. Gauges, P. Ghazal, H. Kawaji, L. Li, Y. Matsuoka, A. Villéger, S.E. Boyd, L. Calzone, M. Courtot, U. Dogrusoz, T.C. Freeman, A. Funahashi, S. Ghosh, A. Jouraku, S. Kim, F. Kolpakov, A. Luna, S. Sahle, E. Schmidt, S. Watterson, G. Wu, I. Goryanin, D.B. Kell, C. Sander, H. Sauro, J.L. Snoep, K. Kohn, H. Kitano: The systems biology graphical notation, Nat. Biotechnol. 27(8), 735–741 (2009)CrossRefGoogle Scholar
  76. 31.76.
    H.M. Sauro, M. Hucka, A. Finney, C. Wellock, H. Bolouri, J. Doyle, H. Kitano: Next generation simulation tools: The systems biology workbench and BioSPICE integration, OMICS 7(4), 355–372 (2003)CrossRefGoogle Scholar
  77. 31.77.
    A. Funahashi, M. Morohashi, H. Kitano, N. Tanimura: CellDesigner: A process diagram editor for gene-regulatory and biochemical networks, Biosilico 1, 159–162 (2003)CrossRefGoogle Scholar
  78. 31.78.
    P. Mendes, S. Hoops, S. Sahle, R. Gauges, J. Dada, U. Kummer: Computational modeling of biochemical networks using COPASI, Methods Mol. Biol. 500, 17–59 (2009)CrossRefGoogle Scholar
  79. 31.79.
    D.A. Benson, I. Karsch-Mizrachi, D.J. Lipman, J. Ostell, E.W. Sayers: GenBank, Nucleic Acids Res. 37(1), D26–D31 (2010)Google Scholar
  80. 31.80.
    A. Kouranov, L. Xie, J. de la Cruz, L. Chen, J. Westbrook, P.E. Bourne, H.M. Berman: The RCSB PDB information portal for structural genomics, Nucleic Acids Res. 34, D302–D305 (2006)CrossRefGoogle Scholar
  81. 31.81.
    R.D. Finn, J. Mistry, J. Tate, P. Coggill, A. Heger, J.E. Pollington, O.L. Gavin, P. Gunasekaran, G. Ceric, K. Forslund, L. Holm, E.L. Sonnhammer, S.R. Eddy, A. Bateman: The Pfam protein families database, Nucleic Acids Res. 38(1), D211–D222 (2010)CrossRefGoogle Scholar
  82. 31.82.
    R. Caspi, T. Altman, J.M. Dale, K. Dreher, C.A. Fulcher, F. Gilham, P. Kaipa, A.S. Karthikeyan, A. Kothari, M. Krummenacker, M. Latendresse, L.A. Mueller, S. Paley, L. Popescu, A. Pujar, A.G. Shearer, P. Zhang, P.D. Karp: The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases, Nucleic Acids Res. 38(1), D473–D479 (2010)CrossRefGoogle Scholar
  83. 31.83.
    L. Matthews, G. Gopinath, M. Gillespie, M. Caudy, D. Croft, B. de Bono, P. Garapati, J. Hemish, H. Hermjakob, B. Jassal, A. Kanapin, S. Lewis, S. Mahajan, B. May, E. Schmidt, I. Vastrik, G. Wu, E. Birney, L. Stein, P. DʼEustachio: Reactome knowledgebase of human biological pathways and processes, Nucleic Acids Res. 37(1), D619–D622 (2009)CrossRefGoogle Scholar
  84. 31.84.
    M. Kuhn, D. Szklarczyk, A. Franceschini, M. Campillos, C. von Mering, L.J. Jensen, A. Beyer, P. Bork: STITCH 2: An interaction network database for small molecules and proteins, Nucleic Acids Res. 38(1), D552–D556 (2010)CrossRefGoogle Scholar
  85. 31.85.
    B. Lehne, T. Schlitt: Protein-protein interaction databases: Keeping up with growing interactomes, Hum. Genomics 3(3), 291–297 (2009)Google Scholar
  86. 31.86.
    P. Shannon, A. Markiel, O. Ozier, N.S. Baliga, J.T. Wang, D. Ramage, N. Amin, B. Schwikowski, T. Ideker: Cytoscape: A software environment for integratedmodels of biomolecular interaction networks, Genome Res. 13(11), 2498–2504 (2003)CrossRefGoogle Scholar
  87. 31.87.
    S. Maere, K. Heymans, M. Kuiper: BiNGO: A cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks, Bioinformatics 21(16), 3448–3449 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2014

Authors and Affiliations

  1. 1.Dipartimento di FarmaciaUniversità di SalernoFiscianoItaly
  2. 2.Dipartimento di FarmaciaUniversità di SalernoFiscianoItaly
  3. 3.Dipartimento di FarmaciaUniversità di SalernoFiscianoItaly

Personalised recommendations