Case-Based Reasoning for Biomedical Informatics and Medicine

  • Periklis Andritsos
  • Igor Jurisica
  • Janice I. Glasgow


Case-based reasoning (CBR) is an integral part of artificial intelligence. It is defined as the process of solving new problems through their comparison with similar ones with existing solutions. The CBR methodology fits well with the approach that healthcare workers take when presented with a new case, making its incorporation into a clinical setting natural. Overall, CBR is appealing in medical domains because a case base already exists, storing symptoms, diagnoses, treatments, and outcomes for each patient. Therefore, there are several CBR systems for medical diagnosis and decision support. This chapter gives an overview of CBR systems, their lifecycle, and different settings in which they appear. It also discusses major applications of CBR in the biomedical field, the methodologies used, and the systems that have been adopted. Section 13.1 provides the necessary background of CBR, while Sect. 13.2 gives an overview of techniques. Section 13.3 presents different systems in which CBR has been successfully applied, and Sect. 13.4 presents biomedical applications. A concluding discussion closes the chapter in Sect. 13.5.


Feature Selection Case Base Edit Distance Continuous Performance Test Saccadic Reaction Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



attention-deficit hyperactivity disorder


area under curve


context ontology web language


case-based reasoning


continuous performance test


computer tomography


cross validation


edit distance


fixation point


kinesiological instrument for normal and altered reaching movement


linked open data


mixture of experts for CBR


natural-language processing


protein–protein interaction


receiver operating characteristic


structured query language


saccadic reaction time


Waikato environment for knowledge analysis


extensible markup language


term-frequency, inverse document-frequency


  1. 13.1.
    M.N. Nguyen, J.M. Zurada, J.C. Rajapakse: Toward better understanding of protein secondary structure: Extracting prediction rules, IEEE/ACM Trans. Comput. Biol. Bioinforma. 8, 858–864 (2011)CrossRefGoogle Scholar
  2. 13.2.
    Z. Zhu, S. Sun, M. Bern: Classification of protein crystallization imagery, IEEE EMBS Annu. Conf. (2004) pp. 1628–1631Google Scholar
  3. 13.3.
    A. Aamodt, E. Plaza: Case-based reasoning: Foundational issues, methodological variations, and system approaches, AI Commun. 7(1), 39–59 (1994)Google Scholar
  4. 13.4.
    I. Jurisica, D. Wigle: Knowledge Discovery in Proteomics (Chapman Hall, London 2004)zbMATHGoogle Scholar
  5. 13.5.
    J. Kolodner: Case-based Reasoning (Morgan Kaufmann, New York 1993)CrossRefzbMATHGoogle Scholar
  6. 13.6.
    S.V. Pantazi, J.F. Arocha, J.R. Moehr: Case-based medical informatics, BMC Med. Inform. Decis. Mak. 4, 1–23 (2004)CrossRefGoogle Scholar
  7. 13.7.
    R. Baeza-Yates, B. Ribeiro-Neto: Modern Information Retrieval (Addison-Wesley-Longman, Amsterdam 1999)Google Scholar
  8. 13.8.
    N. Arshadi, I. Jurisica: An ensemble of case-based classifiers for high-dimensional biological domains, Int. Conf. Case-Based Reason. (2005) pp. 21–34Google Scholar
  9. 13.9.
    N. Arshadi, I. Jurisica: Data mining for case-based reasoning in high-dimensional biological domains, IEEE Trans. Knowl. Data Eng. 17(8), 1127–1137 (2005)CrossRefGoogle Scholar
  10. 13.10.
    Z.-J. Huang, B.-Q. Wang: A novel swarm clustering algorithm and its application for CBR retrieval, 2nd Int. Conf. Inf. Eng. Comput. Sci. (ICIECS) (2010) pp. 1–5Google Scholar
  11. 13.11.
    S. Montani: How to use contextual knowledge in medical case-based reasoning systems: A survey on very recent trends, Artif. Intell. Med. 51(2), 125–131 (2011)CrossRefGoogle Scholar
  12. 13.12.
    S.J. Russell: Use of Knowledge in Analogy and Induction (Morgan Kaufmann, New York 1989)zbMATHGoogle Scholar
  13. 13.13.
    E. Xia, I. Jurisica, J. Waterhouse, V. Sloan: RuNtime estimation using the case-based reasoning approach for scheduling in a grid environment, Int. Conf. Case-Based Reason. (2010) pp. 525–539Google Scholar
  14. 13.14.
    Q. Yang, J. Wu: Keep it simple: A case-base maintenance policy based on clustering and information theory, Can. Conf. AI (2000) pp. 102–114Google Scholar
  15. 13.15.
    A. Lawanna, J. Daengdej: Methods for case maintenance in case-based reasoning, Int. J. Comput. Inform. Eng. 4, 10–18 (2010)Google Scholar
  16. 13.16.
    N. Arshadi, I. Jurisica: Maintaining case-based reasoning systems: A machine learning approach, Eur. Conf. Case-Based Reasoning (2004) pp. 17–31Google Scholar
  17. 13.17.
    K.-D. Althoff, R. Bergmann, S. Wess, M. Manago, E. Auriol, O.I. Larichev, A. Bolotov, Y.I. Zhuravlev, S.I. Gurov: Case-based reasoning for medical decision support tasks: The INRECA approach, Artif. Intell. Med. 12(1), 25–41 (1998)CrossRefGoogle Scholar
  18. 13.18.
    M. Frize, R. Walker: Clinical decision-support systems for intensive care units using case-based reasoning, Med. Eng. Phys. 22, 671–677 (2000)CrossRefGoogle Scholar
  19. 13.19.
    I. Jurisica, J. Mylopoulos, J.I. Glasgow, H. Shapiro, R.F. Casper: Case-based reasoning in IVF: Prediction and knowledge mining, Artif. Intell. Med. 12(1), 1–24 (1998)CrossRefGoogle Scholar
  20. 13.20.
    D. Brien, J.I. Glasgow, D. Munoz: The application of a case-based reasoning system to attention-deficit hyperactivity disorder, Int. Conf. Case-Based Reason. (2005) pp. 122–136Google Scholar
  21. 13.21.
    M. Baig: Case-Based Reasoning: An Effective Paradigm for Providing Diagnostic Support for Stroke Patients, Master Thesis (Queenʼs University, Kingston 2008)Google Scholar
  22. 13.22.
    R.G. Ross, D. Hommer, D. Breiger, C. Varley, A. Radant: Eye movement task related to frontal lobe functioning in children with attention deficit disorder, J. Am. Acad. Child Adolesc. Psychiatry 33, 869–874 (1994)CrossRefGoogle Scholar
  23. 13.23.
    A. Aamodt: Modeling the knowledge contents of CBR systems, Int. Conf. Case-Based Reason. (2001) pp. 32–37, Naval Res. Note AIC-01-003Google Scholar
  24. 13.24.
    P. Cunningham, A. Bonzano: Knowledge engineering issues in developing a case-based reasoning application, Knowl. Based Syst. 12(7), 371–379 (1999)CrossRefGoogle Scholar
  25. 13.25.
    N. Xiong, P. Funk: Combined feature selection and similarity modelling in case-based reasoning using hierarchical memetic algorithm, IEEE Congr. Evol. Comput. (2010) pp. 1–6Google Scholar
  26. 13.26.
    L. Gazendam, C. Wartena, R. Brussee: Thesaurus based term ranking for keyword extraction, DEXA Workshops (2010) pp. 49–53Google Scholar
  27. 13.27.
    Y. Matsuo, M. Ishizuka: Keyword extraction from a single document using word co-occurrence statistical information, Int. J. Artif. Intell. Tools 13(1), 157–169 (2004)CrossRefGoogle Scholar
  28. 13.28.
    R. Kohavi, G.H. John: Wrappers for feature subset selection, Artif. Intell. 97(1-2), 273–324 (1997)zbMATHCrossRefGoogle Scholar
  29. 13.29.
    H. Peng, F. Long, C.H.Q. Ding: Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy, IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1226–1238 (2005)CrossRefGoogle Scholar
  30. 13.30.
    K. Gopal: Efficient case-based reasoning through feature weighting, and its application in protein crystallography. Ph.D. Thesis (Texas A & M University, College Station 2007)Google Scholar
  31. 13.31.
    C. Kirsopp, M.J. Shepperd, J. Hart: Search heuristics, case-based reasoning and software project effort prediction, Genet. Evol. Comput. Conf. (2002) pp. 1367–1374Google Scholar
  32. 13.32.
    I. Guyon, A. Elisseeff: An introduction to variable and feature selection, J. Mach. Learn. Res. 3, 1157–1182 (2003)zbMATHGoogle Scholar
  33. 13.33.
    P.C. Boutros, S.K. Lau, M. Pintilie, N. Liu, F.A. Shepherd, S.D. Der, M.-S. Tsao, L.Z. Penn, I. Jurisica: Prognostic gene signatures for non-small-cell lung cancer, Proc. Natl. Acad. Sci. USA 106(8), 2824–2828 (2009)CrossRefGoogle Scholar
  34. 13.34.
    K. Börner, E. Pippig, E.-C. Tammer, C.-H. Coulon: Structural similarity and adaptation, Eur. Winter Conf. Brain Research (1996) pp. 58–75Google Scholar
  35. 13.35.
    E.L. Rissland, J.J. Daniels: The synergistic application of CBR to IR, Artif. Intell. Rev. 10(5-6), 441–475 (1996)CrossRefGoogle Scholar
  36. 13.36.
    M. Lenz, H.-D. Burkhard, P. Pirk, E. Auriol, M. Manago: CBR for diagnosis and decision support, AI Commun. 9(3), 138–146 (1996)Google Scholar
  37. 13.37.
    Y. Niu, D. Otasek, I. Jurisica: Evaluation of linguistic features useful in extraction of interactions from PubMed; Application to annotating known, high-throughput and predicted interactions in I2D, Bioinformatics 26(1), 111–119 (2010)CrossRefGoogle Scholar
  38. 13.38.
    P. Andritsos, P. Tsaparas, R.J. Miller, K.C. Sevcik: LIMBO: Scalable clustering of categorical data, Eur. Conf. Case-Based Reasoning (2004) pp. 123–146Google Scholar
  39. 13.39.
    P. Andritsos, R.J. Miller, P. Tsaparas: Information-theoretic tools for structure discovery in large data sets, SIGMOD (2004) pp. 731–742Google Scholar
  40. 13.40.
    M. Gluck, J. Corter: Information, uncertainty, and the utility of categories, Proc. 7th Annu. Conf. Cogn. Sci. Soc. (COGSCI) (1985) pp. 283–287Google Scholar
  41. 13.41.
    C.A. Cumbaa, I. Jurisica: Protein crystallization analysis on the world community grid, J. Struct. Funct. Genomics 11, 61–69 (2010)CrossRefGoogle Scholar
  42. 13.42.
    P. Perner: Similarity-based image segmentation for determination of brain/liquor ratio in CT image by Alzheimer dementia, Bildverarb. für die Med. (1998)Google Scholar
  43. 13.43.
    G. Xu, C. Chiu, E.D. Angelini, A.F. Laine: An incremental and optimized learning method for the automatic classification of protein crystal images, IEEE EMBS Annu. Int. Conf. (2006) pp. 6526–6529Google Scholar
  44. 13.44.
    K. Kawabata, M. Takahashi, K. Saitoh, H. Asama, T. Mishima, M. Sugahara, M. Miyano: Evaluation of crystalline objects in crystallizing protein droplets based on line-segment information in greyscale images, Acta Crystallogr. D 62, 239–245 (2006)CrossRefGoogle Scholar
  45. 13.45.
    K. Saitoh, K. Kawabata, H. Asama, T. Mishima, M. Sugahara, M. Miyano: Evaluation of protein crystallization states based on texture information derived from greyscale images, Acta Crystallogr. D 61, 873–880 (2005)CrossRefGoogle Scholar
  46. 13.46.
    S. Pan, G. Shavit, M. Penas-Centeno, D.-H. Xu, L. Shapiro, R. Ladner, E. Riskin, W. Hol, D. Meldrum: Automated classification of protein crystallization images using support vector machines with scale-invariant texture and gabor features, Acta Crystallogr. D 62, 271–279 (2006)CrossRefGoogle Scholar
  47. 13.47.
    J. Wilson: Automated Classification of Images from Crystallization Experiments, Ind. Conf. Data Min. (2006) pp. 459–473Google Scholar
  48. 13.48.
    B. López, C. Pous, P. Gay, A. Pla, J. Sanz, J. Brunet: eXiT*CBR: A framework for case-based medical diagnosis development and experimentation, Artif. Intell. Med. 51(2), 81–91 (2011)CrossRefGoogle Scholar
  49. 13.49.
    M. Göker, C. Baudin, M. Manago: Development of industrial knowledge management applications with case-based reasoning. In: Successful Case-Based Reasoning Applications, ed. by S. Montani, L. Jain (Springer, Berlin, Heidelberg 2010) pp. 53–82CrossRefGoogle Scholar
  50. 13.50.
    C.L. Cobb, A.M. Agogino: Case-based reasoning for evolutionary mems design, J. Comput. Inform. Sci. Eng. 10(3), 39–48 (2010)Google Scholar
  51. 13.51.
    K.J. Kim, K. Kim: Preliminary cost estimation model using case-based reasoning and genetic algorithms, J. Comput. Civ. Eng. 24(6), 499–505 (2010)CrossRefGoogle Scholar
  52. 13.52.
    C.-H. Leon Lee, A. Liu, H.-H. Huang: Using planning and case-based reasoning for service composition, J. Adv. Comput. Intell. Intell. Inform. 14, 540–548 (2010)Google Scholar
  53. 13.53.
    M. Tingyu, M. Biao: Case based reasoning applied in personal financing: Representing cases based on XML, J. Adv. Comput. Intell. Intell. Inform. 14, 540–548 (2010)Google Scholar
  54. 13.54.
    A. Wyner, T. Bench-Capon: Argument schemes for legal case-based reasoning, Proc. 2007 Conf. Leg. Knowl. Inform. Syst. (2007) pp. 139–149Google Scholar
  55. 13.55.
    M.U. Ahmed, S. Begum: Case-based reasoning for medical and industrial decision support. In: Successful Case-Based Reasoning Applications, ed. by S. Montani, L. Jain (Springer, Berlin, Heidelberg, 2010) pp. 7–52CrossRefGoogle Scholar
  56. 13.56.
    M. dʼAquin, J. Lieber, A. Napoli: Decentralized case-based reasoning for the semantic web, Int. Seman. Web Conf. (2005) pp. 142–155Google Scholar
  57. 13.57.
    C.S. Sauer, K. Bach, K.-D. Althoff: Integration of linked-open data in case-based reasoning systems, LWA Workshop (2010) pp. 269–274Google Scholar
  58. 13.58.
    L.N. Nassif, J. Marcos, S. Nogueira, A. Karmouch, M. Ahmed, F. de Andrade: Job completion prediction using case-based reasoning for grid computing environments, Concurr. Comput. Pract. Exp. 19(9), 1253–1269 (2007)CrossRefGoogle Scholar
  59. 13.59.
    I. Jurisica: TA3: Theory, implementation and applications of similarity-based retrieval for case-based reasoning. Ph.D. Thesis (University of Toronto, Toronto 1998)Google Scholar
  60. 13.60.
    V.K. Chaudhri, I. Jurisica, M. Koubarakis, D. Plexousakis, T. Topaloglou: The KBMS project and beyond, Concept. Model. (2009) pp. 466–482Google Scholar
  61. 13.61.
    I. Spasic, S. Ananiadou, J. Tsujii: MaSTerClass: A case-based reasoning system for the classification of biomedical terms, Bioinformatics 21(11), 2748–2758 (2005)CrossRefGoogle Scholar
  62. 13.62.
    J. Kolodner, R.M. Kolodner: Using experience in clinical problem solving: Introduction and framework, IEEE Trans. Syst. Man Cybern. 17, 420–431 (1987)CrossRefGoogle Scholar
  63. 13.63.
    R. Bareiss, B.W. Porter, C.C. Wier: Protos: An exemplar-based learning apprentice, Int. J. Man-Mach. Stud. 29(5), 549–561 (1988)CrossRefGoogle Scholar
  64. 13.64.
    P. Koton: Reasoning about evidence in causal explanations, AAAI (1988) pp. 256–263Google Scholar
  65. 13.65.
    R.M. Turner: Using schemas for diagnosis, Comput. Methods Programs Biomed. 30, 199–207 (1989)CrossRefGoogle Scholar
  66. 13.66.
    B. López, E. Plaza: Case-based planning for medical diagnosis, Int. Symp. Methodol. Intell. Syst. (ISMIS) (1993) pp. 96–105Google Scholar
  67. 13.67.
    I. Bichindaritz: A case-based reasoner adaptive to different cognitive tasks, Int. Conf. Case-Based Reason. (1995) pp. 390–400Google Scholar
  68. 13.68.
    K.D. Fenstermacher: CADI – An intelligent, multimedia tutor for cardiac auscultation, AAAI/IAAI, Vol. 2 (1996) p. 1387Google Scholar
  69. 13.69.
    R.T. Macura, K.J. Macura: MacRad: Radiology image resource with a case-based retrieval system, Int. Conf. Case-Based Reason. (1995) pp. 43–54Google Scholar
  70. 13.70.
    M. Grimnes, A. Aamodt: A two layer case-based reasoning architecture for medical image understanding, Eur. Winter Conf. Brain Res. (1996) pp. 164–178Google Scholar
  71. 13.71.
    M. Nilsson, M. Sollenborn: Advancements and trends in medical case-based reasoning: An overview of systems and system development, Proc. 17th Int. Florida Artif. Intell. Res. Soc. Conf. (AAAI, Menlo Park, 2004) pp. 178–183Google Scholar
  72. 13.72.
    J.A. Recio-García, B. Díaz-Agudo, M.-A. Gómez-Martín, N. Wiratunga: Extending jCOLIBRI for textual CBR, Int. Conf. Case-Based Reason. (2005) pp. 421–435Google Scholar
  73. 13.73.
    A. Stahl, T. Roth-Berghofer: Rapid prototyping of CBR applications with the open source tool myCBR, Eur. Conf. Case-Based Reasoning (2008) pp. 615–629Google Scholar
  74. 13.74.
    M. dʼAquin, J. Lieber, A. Napoli: Adaptation knowledge acquisition: A case study for case-based decision support in oncology, Comput. Intell. 22(3-4), 161–176 (2006)MathSciNetCrossRefGoogle Scholar
  75. 13.75.
    E. Armengol: Classification of melanomas in situ using knowledge discovery with explained case-based reasoning, Artif. Intell. Med. 51(2), 93–105 (2011)CrossRefGoogle Scholar
  76. 13.76.
    H.E. Rosvold, A.F. Mirsky, I. Sarason, E.D. Bransome Jr., L.H. Beck: A continuous performance test of brain damage, J. Consult. Clin. Psychol. 20(5), 343–350 (1956)CrossRefGoogle Scholar
  77. 13.77.
    S.H. Scott: Apparatus for measuring and perturbing shoulder and elbow-joint positions and torques during reaching, J. Neurosci. Methods 89, 119–127 (1999)CrossRefGoogle Scholar
  78. 13.78.
    I.H. Witten, E. Frank, L. Trigg, M. Hall, G. Holmes, S.J. Cunningham: Weka: Practical Machine Learning Tools and Techniques with Java Implementations (1999), available online at
  79. 13.79.
    I. Jurisica, J.I. Glasgow: Applications of case-based reasoning in molecular biology, AI Mag. 25(1), 85–96 (2004)Google Scholar
  80. 13.80.
    A. Ducruix, R. Giege: Crystallization of Nucleic Acids and Proteins. A Practical Approach (Oxford Univ. Press, Oxford 1992)Google Scholar
  81. 13.81.
    I. Jurisica, P. Rogers, J.I. Glasgow, R.J. Collins, J.R. Wolfley, J.R. Luft, G.T. DeTitta: Improving objectivity and scalability in protein crystallization: Integrating image analysis with knowledge discovery, IEEE Intell. Syst. 16(6), 26–34 (2001)CrossRefGoogle Scholar
  82. 13.82.
    I. Jurisica, C.A. Cumbaa, A. Lauricella, N. Fehrman, C. Veatch, R. Collins, J. Luft, G. DeTitta: Automatic classification of protein crystallization screens on 1536-well plates, Proc. Annu. Conf. Am. Crystallogr. Assoc. (ACA03) (2003)Google Scholar

Copyright information

© Springer-Verlag 2014

Authors and Affiliations

  1. 1.Faculty of Information (iSchool)University of TorontoTorontoCanada
  2. 2.Department of Computer ScienceUniversity of TorontoTorontoCanada
  3. 3.School of ComputingQueenʼs UniversityKingstonCanada

Personalised recommendations