Skip to main content

Part of the book series: Springer Theses ((Springer Theses,volume 8))

Abstract

In this chapter, details of the DEMS instrument design and construction created as part of this thesis are presented. The instrument employs a dual thin-layer electrochemical flow cell and microporous PTFE membrane interfaced to a high vacuum system containing a QMS. The vacuum system design possesses a tubular aperture to control and direct the flux of gas through the cross-beam ion source, whilst a 3-stage differentially pumped vacuum construction provided optimum operating pressures of the QMS in order to maximise instrument sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mayrhofer KJJ et al (2009) An electrochemical cell configuration incorporating an ion conducting membrane separator between reference and working electrode. Int J Electrochem Sci 4(1):1–8

    CAS  Google Scholar 

  2. Jusys Z, Massong H, Baltruschat H (1999) A new approach for simultaneous DEMS and EQCM: electro-oxidation of adsorbed CO on Pt and Pt-Ru. J Electrochem Soc 146(3): 1093–1098

    Article  CAS  Google Scholar 

  3. Baltruschat H (2004) Differential electrochemical mass spectrometry. J Am Soc Mass Spectrom 15(12):1693–1706

    Article  CAS  Google Scholar 

  4. Holzbecher E et al (2006) Modellierung von Dünnschichtzellen (Thin Layer FLow Modelling). In: COMSOL Users Conference. 2006. Frankfurt

    Google Scholar 

  5. Fuhrmann J et al (2009) Numerical calculation of the limiting current for a cylindrical thin layer flow cell. Electrochim Acta 55(2):430–438

    Article  CAS  Google Scholar 

  6. Wolter O, Heitbaum J (1984) Differential electrochemical mass-spectroscopy (Dems) - a new method for the study of electrode processes. Berichte der bunsen-gesellschaft-Phys Chem Chem Phys 88(1):2–6

    Article  CAS  Google Scholar 

  7. Fujihira M, Noguchi T (1993) A novel differential electrochemical mass-spectrometer (DEMS) with a stationary gas-permeable electrode in a rotational flow produced by a rotating rod. J Electroanal Chem 347(1–2):457–463

    CAS  Google Scholar 

  8. Jusys Z, Behm RJ (2001) Methanol oxidation on a carbon-supported pt fuel cell catalysta kinetic and mechanistic study by differential electrochemical mass spectrometry. J Phys Chem B 105(44):10874–10883

    Article  CAS  Google Scholar 

  9. Smith SPE, Casado-Rivera E, Abruna HD (2003) Application of differential electrochemical mass spectrometry to the electrocatalytic oxidation of formic acid at a modified Bi/Pt electrode surface. J Solid State Electrochem 7(9):582–587

    Article  CAS  Google Scholar 

  10. Operating Instructions, Quadrupole mass spectrometer system, QMG 422. Vol. BG 805 983 BE: Pfeiffer Vacuum GmbH

    Google Scholar 

  11. Velghe M, Deacon DAG, Ortega JM (1984) Realization of a variable aperture diaphragm working in ultra high vacuum. Appl Opt 23(21):3851

    Google Scholar 

  12. Furman SA et al (2001) Improving the detection limit of a quadrupole mass spectrometer. J Vac Sci Technol A: Vac Surf Films 19(3):1032–1033

    Article  CAS  Google Scholar 

  13. Gerlach W (1996) PPM analysis by using quadrupole mass spectrometers with closed ion source. Vacuum 47(4):371–374

    Article  CAS  Google Scholar 

  14. Wiberg GKH (2010) The devlopment of a state-of-the-art experimental setup demonstrated by the investigation of fuel cell reactions in alkaline electrolyte, in Lehrstühl für Physicalische Chemie. Technische Universität München: München

    Google Scholar 

  15. KD Scientific Model 200 Series Manual: KD Scientific Inc

    Google Scholar 

  16. Britz D (1978) iR elimination in electrochemical cells. J Electroanal Chem 88(3): 309–352

    Article  CAS  Google Scholar 

  17. Oelßner W, Berthold F, Guth U (2006) The iR drop—well-known but often underestimated in electrochemical polarization measurements and corrosion testing. Mater Corros 57(6): 455–466

    Article  Google Scholar 

  18. Lamy C, Herrmann CC (1975) A new method for ohmic-drop compensation in potentiostatic circuits - stability and bandpass analysis, including effect of faradaic impedance. J Electroanal Chem 59(2):113–135

    Article  CAS  Google Scholar 

  19. Quadstar 32-bit, Application Program for Quadrupole Mass Spectrometers QMS 422 and QMS 200.: Pfeiffer Vacuum GmbH

    Google Scholar 

  20. Homan F (1980) Design for an inexpensive externally operable variable aperture to be used in UHV. J Vac Sci Technol 17(2):664–664

    Article  CAS  Google Scholar 

  21. Operating Instructions, Compact Capacitance Gauge: Pfeiffer Vacuum GmbH

    Google Scholar 

  22. Operating Instructions, Compact FullRange BA Gauge: Pfeiffer Vacuum GmbH

    Google Scholar 

  23. Operating Instructions, Compact Cold Cathode Gauge: Pfeiffer Vacuum GmbH

    Google Scholar 

  24. Operating manual, TPG 256 A, Vacuum measurement and control unit for Compact Gauges, MaxiGauge

    Google Scholar 

  25. Operating Instructions: TRIVAC B Rotary Vane Vacuum Pump D 16 B/D25 B: Leybold Vacuum

    Google Scholar 

  26. Lukindo A LabVIEW Queued State Machine Architecture. 2007 01 Oct 2007; Available from: http://expressionflow.com/2007/10/01/labview-queued-state-machine-architecture/

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ashton, S. (2012). Design and Construction of the DEMS Instrument. In: Design, Construction and Research Application of a Differential Electrochemical Mass Spectrometer (DEMS). Springer Theses, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30550-4_3

Download citation

Publish with us

Policies and ethics