Differential Electrochemical Mass Spectrometry

  • Sean James Ashton
Part of the Springer Theses book series (Springer Theses, volume 8)


The intention of this chapter is to provide an overview of the DEMS technique, the instrument designs and example research applications. This involves the presentation and discussion of previous design solutions, which are separated into three parts: the electrochemical cell, membrane interface and the vacuum system of the mass spectrometer.


Vacuum System Inductively Couple Plasma Atomic Emission Spectroscopy Membrane Interface Electrochemical Quartz Crystal Microbalance PTFE Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Wolter O, J Heitbaum (1984) Differential electrochemical mass-spectroscopy (Dems) - a new method for the study of electrode processes. berichte der bunsen-gesellschaft-physical chemistry Chem Phys 88(1):2–6Google Scholar
  2. 2.
    Bruckenstein S, RR Gadde (1971) Use of a porous electrode for in situ mass spectrometric determination of volatile electrode reaction products. J Am Chem Soc 93(3):793–794CrossRefGoogle Scholar
  3. 3.
    Jusys Z, H. Massong, H. Baltruschat (1999) A new approach for simultaneous DEMS and EQCM: electro-oxidation of adsorbed CO on Pt and Pt-Ru. J Electrochem Soc 146(3):1093–1098CrossRefGoogle Scholar
  4. 4.
    Hoch G, B Kok (1963) A mass spectrometer inlet system for sampling gases dissolved in liquid phases. Arch Biochem Biophys 101(1):160–170CrossRefGoogle Scholar
  5. 5.
    Willsau J, J Heitbaum (1984) The influence of Pt-activation on the corrosion of carbon in gas-diffusion electrodes - a dems study. J Electroanal Chem 161(1):93–101CrossRefGoogle Scholar
  6. 6.
    Schmiemann U, H Baltruschat (1992) The adsorption of ethene at pt single-crystal electrodes - desorption products and observation of multiple adsorption states BY DEMS. J Electroanal Chem 340(1–2):357–363Google Scholar
  7. 7.
    Jusys Z, J Kaiser, RJ Behm (2002) Composition and activity of high surface area PtRu catalysts towards adsorbed CO and methanol electrooxidation - A DEMS study. Electrochimica Acta 47(22–23):3693–3706CrossRefGoogle Scholar
  8. 8.
    Seiler T et al. Poisoning of PtRu/C catalysts in the anode of a direct methanol fuel cell: a DEMS study. Electrochimica Acta 49(22–23):3927–3936CrossRefGoogle Scholar
  9. 9.
    Baltruschat H (2004) Differential electrochemical mass spectrometry. J Am Soc Mass Spectrom 15(12):1693–1706CrossRefGoogle Scholar
  10. 10.
    Wieckowski A (1999) Interfacial electrochemistry: theory: experiment, and applications. Marcel Dekker, New YorkGoogle Scholar
  11. 11.
    Fujihira M, T Noguchi (1993) A novel differential electrochemical mass-spectrometer (dems) with a stationary gas-permeable electrode in a rotational flow produced by a rotating rod. J Electroanal Chem 347(1–2):457–463Google Scholar
  12. 12.
    Mayrhofer KJJ et al. (2009) An electrochemical cell configuration incorporating an ion conducting membrane separator between reference and working electrode. Int J Electrochem Sci 4(1):1–8Google Scholar
  13. 13.
    Lanz M, P Novak (2001) DEMS study of gas evolution at thick graphite electrodes for lithium-ion batteries: the effect of gamma-butyrolactone. J Power Sources 102(1-2):277–282CrossRefGoogle Scholar
  14. 14.
    Novak P et al. (2000) Advanced in situ methods for the characterization of practical electrodes in lithium-ion batteries. J Power Sources 90(1):52–58CrossRefGoogle Scholar
  15. 15.
    Hartung T, H Baltruschat (1990) Differential electrochemical mass-spectrometry using smooth electrodes - adsorption and h/d-exchange reactions of benzene on pt. Langmuir 6(5):953–957CrossRefGoogle Scholar
  16. 16.
    Loffler T, H Baltruschat (2003) Temperature dependent formation of multiple adsorption states from ethene at polycrystalline Pt and Pt(111) electrodes studied by differential electrochemical mass spectrometry. J ElectroanalChem 554:333–344CrossRefGoogle Scholar
  17. 17.
    Sanabria-Chinchilla J et al. (2006) A DEMS study of the electrocatalytic hydrogenation and oxidation of p-dihydroxybenzene at polycrystalline and monocrystalline platinum electrodes. J Appl Electrochem36(11):1253–1260CrossRefGoogle Scholar
  18. 18.
    Sanabria-Chinchilla J et al. (2007) Electrocatalytic hydrogenation and oxidation of aromatic compounds studied by DEMS: Benzene and p-dihydroxybenzene at ultrathin Pd films electrodeposited on Au(hkl) surfaces. J Colloid Interface Sci 314(1):152–159CrossRefGoogle Scholar
  19. 19.
    Heinen M et al.(2007) In situ ATR-FTIRS coupled with on-line DEMS under controlled mass transport conditions—A novel tool for electrocatalytic reaction studies. Electrochimica Acta 52(18):5634–5643CrossRefGoogle Scholar
  20. 20.
    Vielstich W, Gasteiger H, Yokokawa H (2009) Handbook of fuel cells: advanced in electrocatalysis, materials, diagnostics and durability, vol. 5. Wiley, New YorkGoogle Scholar
  21. 21.
    Jusys Z, Behm RJ (2001) Methanol oxidation on a carbon-supported pt fuel cell catalysta kinetic and mechanistic study by differential electrochemical mass spectrometry. J Phys Chem B 105(44):10874–10883CrossRefGoogle Scholar
  22. 22.
    Holzbecher E (2006) Thin layer flow cell modelling. in COMSOL users conference,FrankfurtGoogle Scholar
  23. 23.
    Colmenares LC et al.(2009) Model study on the stability of carbon support materials under polymer electrolyte fuel cell cathode operation conditions. J Power Sources 190(1):14–24CrossRefGoogle Scholar
  24. 24.
    Ming-fang L et al. (2010) Oxidation of carbon supports at fuel cell cathodes: differential electrochemical mass spectrometric study. Chin J Chem Phys 23(4):442Google Scholar
  25. 25.
    Gao YZ, et al. (1994) New online mass-spectrometer system designed for platinum single-crystal electrode and electroreduction of acetylene. J Electroanal Chem 372(1–2):195–200Google Scholar
  26. 26.
    Wonders AH et al. (2006) On-line mass spectrometry system for measurements at single-crystal electrodes in hanging meniscus configuration. J Appl Electrochem 36(11):1215–1221CrossRefGoogle Scholar
  27. 27.
    Jambunathan K, Jayaraman S, Hillier AC (2004) A multielectrode electrochemical and scanning differential electrochemical mass spectrometry study of methanol oxidation on electrodeposited ptxruy. Langmuir 20(5):1856–1863CrossRefGoogle Scholar
  28. 28.
    Jambunathan K, Hillier AC(2003) Measuring electrocatalytic activity on a local scale with scanning differential electrochemical mass spectrometry. J Electrochem Soc 150(6):E312–E320CrossRefGoogle Scholar
  29. 29.
    Urtiaga AM et al.(2001) Parallelism and differences of pervaporation and vacuum membrane distillation in the removal of VOCs from aqueous streams. Sep Purif Technol 22-23:327–337CrossRefGoogle Scholar
  30. 30.
    Drioli E, Calabro V, Wu Y(1986) Microporous membranes in membrane distillation. Pure Appl Chem 58(12):1657–1662Google Scholar
  31. 31.
    Jusys Z, Kaiser J, Behm RJ (2003) Methanol electrooxidation over pt/c fuel cell catalysts: dependence of product yields on catalyst loading. Langmuir 19(17):6759–6769CrossRefGoogle Scholar
  32. 32.
    Wang H, Jusys Z, Behm RJ (2006) Ethanol electro-oxidation on carbon-supported Pt, PtRu and Pt3Sn catalysts: A quantitative DEMS study. J Power Sources 154(2):351–359CrossRefGoogle Scholar
  33. 33.
    Schmidt TJ et al. (2001) On the CO tolerance of novel colloidal PdAu/carbon electrocatalysts. Journal of Electroanalytical Chemistry 501(1-2):132–140Google Scholar
  34. 34.
    Smith SPE, Casado-Rivera E, Abruna HD (2003) Application of differential electrochemical mass spectrometry to the electrocatalytic oxidation of formic acid at a modified Bi/Pt electrode surface. J Solid State Electrochem 7(9):582–587CrossRefGoogle Scholar
  35. 35.
    Pastor E, Schmidt VM (1995) Electrochemical reactions of ethene on polycrystalline au electrodes in acid-solution studied by differential electrochemical mass-spectrometry and isotope labeling. J Electroanal Chem383(1-2):175–180Google Scholar
  36. 36.
    Rosca V, Beltramo GL, Koper MTM (2004) Hydroxylamine electrochemistry at polycrystalline platinum in acidic media: a voltammetric, DEMS and FTIR study. J Electroanal Chem 566(1):53–62CrossRefGoogle Scholar
  37. 37.
    Willsau J Wolter O, Heitbaum J (1985) On the nature of the adsorbate during methanol oxidation at platinum—a dems study. J Electroanal Chem 185(1):63–170CrossRefGoogle Scholar
  38. 38.
    Jusys Z Liaukonis J, Vaskelis A(1991) The catalytic-oxidation of hypophosphite on nickel studied by electrochemical mass-spectrometry. J Electroanal Chem 307(1–2):87–97Google Scholar
  39. 39.
    Eggert G, Heitbaum J (1986) Electrochemical reactions of propylenecarbonate and electrolytes solved therein—a dems study. Electrochimica Acta 31(11):1443–1448CrossRefGoogle Scholar
  40. 40.
    Hibbert D.B, Churchill CR (1984) Kinetics of the electrochemical evolution of isotopically enriched gases. Part 3-Hydrogen and deuterium evolution on platinum and platinised tungsten trioxide. J Chem Soc, Faraday Trans 1: Phys Chem Condens Phases 80(7):1977–1984Google Scholar
  41. 41.
    Diehl G, Karst U (2002) On-line electrochemistry—MS and related techniques. Anal Bioanal Chem 373(6):390–398CrossRefGoogle Scholar
  42. 42.
    Deng H, Berkel GJV (1999) A thin-layer electrochemical flow cell coupled on-line with electrospray-mass spectrometry for the study of biological redox reactions. Electroanalysis 11(12):857–865CrossRefGoogle Scholar
  43. 43.
    Bökman CF, Zettersten C, Nyholm L (2004) A setup for the coupling of a thin-layer electrochemical flow cell to electrospray mass spectrometry. Anal Chem 76(7):2017–2024CrossRefGoogle Scholar
  44. 44.
    Zhou F (2005) Electrochemistry combined on-line with atomic mass spectrometry and related techniques for trace-metal analysis and electrode-reaction studies. TrAC Trends Anal Chem 24(3):218–227CrossRefGoogle Scholar
  45. 45.
    Wasmus S Samms SR, Savinell RF (1995) Multipurpose electrochemical mass-spectrometry—a new powerful extension of differential electrochemical mass-spectrometry. J Electrochem Soc 142(4):1183–1189CrossRefGoogle Scholar
  46. 46.
    Willsau J, Wolter O, Heitbaum J (1985) Does the oxide layer take part in the oxygen evolution reaction on platinum—a dems study. J Electroanal Chem 195(2):299–306CrossRefGoogle Scholar
  47. 47.
    Bansch B. et al. (1989) Reduction and oxidation of adsorbed acetone at platinum-electrodes studied by dems. J Electroanal Chem 259(1–2):207–215Google Scholar
  48. 48.
    Loffler T et al.(2003) Adsorption and desorption reactions of bicyclic aromatic compounds at polycrystalline and Pt(111) studied by DEMS. J Electroanal Chem 550:81–92CrossRefGoogle Scholar
  49. 49.
    Vrestal J et al. (1999) Mass spectrometric study of desorption and hydrogenation of biphenyl, naphthalene and t-butylbenzene on poly- and monocrystalline platinum electrodes. J Electroanal Chem 461(1–2):90–93CrossRefGoogle Scholar
  50. 50.
    Jusys Z et al. (2002) Activity of PtRuMeOx (Me = W, Mo or V) catalysts towards methanol oxidation and their characterization. J Power Source 105(2):297–304CrossRefGoogle Scholar
  51. 51.
    Wang H, Baltruschat H (2007) DEMS study on methanol oxidation at poly- and monocrystalline platinum electrodes:  the effect of anion, temperature, surface structure, ru adatom, and potential.J Phys Chem C 111(19):7038–7048CrossRefGoogle Scholar
  52. 52.
    Fujiwara N, Friedrich KA, Stimming U (1999) Ethanol oxidation on PtRu electrodes studied by differential electrochemical mass spectrometry. J Electroanal Chem 472(2):120–125CrossRefGoogle Scholar
  53. 53.
    Jiang L et al. (2007) Ethanol electrooxidation on novel carbon supported Pt/SnOx/C catalysts with varied Pt : Sn ratio. Electrochimica Acta 53(2):377–389CrossRefGoogle Scholar
  54. 54.
    Colmenares L et al. (2006) Ethanol oxidation on novel, carbon supported Pt alloy catalysts—model studies under defined diffusion conditions. Electrochimica Acta 52(1):221–233CrossRefGoogle Scholar
  55. 55.
    Bagotzky VS, Vassiliev YB, Khazova OA (1977) Generalized scheme of chemisorption, electrooxidation and electroreduction of simple organic-compounds on platinum group metals. J Electroanal Chem 81(2):229–238CrossRefGoogle Scholar
  56. 56.
    Wang H, Loffler T, Baltruschat H (2001) Formation of intermediates during methanol oxidation: a quantitative DEMS study. J Appl Electrochem 31(7):759–765CrossRefGoogle Scholar
  57. 57.
    Anastasijevic NA, Baltruschat H, Heitbaum J (1989)DEMS As a tool for the investigation of dynamic processes—galvanostatic formic-acid oxidation on a pt electrode. J Electroanal Chem 272(1–2):89–100Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sean James Ashton
    • 1
  1. 1.Department of ChemistryUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations