Introduction

  • Sean James Ashton
Chapter
Part of the Springer Theses book series (Springer Theses, volume 8)

Abstract

At the beginning of a thesis dedicated to the construction of a differential electrochemical mass spectrometer (DEMS), it is essential to first present the broader significance of the instruments intended application in the fundamental study of fuel cell relevant electrochemical reaction processes.

Keywords

Fuel Cell Oxygen Reduction Reaction Proton Exchange Membrane Fuel Cell Membrane Electrode Assembly Methanol Oxidation Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Boyle R et al. (2008) Global trends in sustainable energy investment 2008. United Nations Environment ProgrammeGoogle Scholar
  2. 2.
    Commision E (2003) EUR 20719 EN—Hydrogen energy and fuel cells—a vision of our futureGoogle Scholar
  3. 3.
    Ro ST, Sohn JL (2007) Some issues on performance analysis of fuel cells in thermodynamic point of view. J Power Sources 167(2): 295–301CrossRefGoogle Scholar
  4. 4.
    Haas HR, Davis MT (2009) Electrode and catalyst durability requirements in automotive PEM applications: technology status of a recent MEA design and next generation challenges. ECS Trans 25(1):1623–1631CrossRefGoogle Scholar
  5. 5.
    Schmittinger W, Vahidi A (2008) A review of the main parameters influencing long-term performance and durability of PEM fuel cells. J Power Sources 180(1):1–14CrossRefGoogle Scholar
  6. 6.
    Gasteiger HA, Marković NM (2009) Just a dream—or future reality? Science 324(5923):48–49CrossRefGoogle Scholar
  7. 7.
    Gasteiger HA et al (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B 56(1–2):9–35Google Scholar
  8. 8.
    Lindermeir A et al (2004) On the question of MEA preparation for DMFCs. J Power Sources 129(2):180–187CrossRefGoogle Scholar
  9. 9.
    Gasteiger H, Mathias M (2002) Fundamental research and development challenges in polymer electrolyte fuel cell technology. In: 202nd Meeting of the ECS. Salt Lake CityGoogle Scholar
  10. 10.
    Wiberg GKH, MayrhoferK JJ, Arenz M (2010) Investigation of the oxygen reduction activity on silver—a rotating disc electrode study. Fuel Cells 10(4):575–581CrossRefGoogle Scholar
  11. 11.
    Gasteiger HA et al (1993) Methanol electrooxidation on well-characterized platinum-ruthenium bulk alloys. J Phys Chem 97(46):12020–12029CrossRefGoogle Scholar
  12. 12.
    Markovic NM et al (1994) Structural effects in electrocatalysis—oxygen reduction on platinum low-index single-crystal surfaces in perchloric-acid solutions. J Electroanal Chem 377(1–2):249–259Google Scholar
  13. 13.
    Stamenkovic VR et al (2007) Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat Mater 6(3):241–247CrossRefGoogle Scholar
  14. 14.
    Markovic NM et al (1995) Electrooxidation mechanisms of methanol and formic-acid on PT-RU alloy surfaces. Electrochim Acta 40(1):91–98CrossRefGoogle Scholar
  15. 15.
    Gasteiger H et al (1994) Temperature-dependent methanol electrooxidation on well-characterized PT-RU alloys. J Electrochem Soc 141(7):1795–1803CrossRefGoogle Scholar
  16. 16.
    Gasteiger HA et al (1994) Electrooxidation of small organic-molecules on well-characterized PT-RU alloys. Electrochim Acta 39(11–12):1825–1832CrossRefGoogle Scholar
  17. 17.
    Koper MTM (2005) Combining experiment and theory for understanding electrocatalysis. J Electroanal Chem 574(2):375–386CrossRefGoogle Scholar
  18. 18.
    Markovic NM, Ross PN (2002) Surface science studies of model fuel cell electrocatalysts. Surf Sci Rep 45(4–6):117–229CrossRefGoogle Scholar
  19. 19.
    Markovic NM, Ross PN (2000) Electrocatalysts by design: from the tailored surface to a commercial catalyst. Electrochim Acta 45(25–26):4101–4115CrossRefGoogle Scholar
  20. 20.
    Mayrhofer KJJ et al (2008) Measurement of oxygen reduction activities via the rotating disc electrode method: from Pt model surfaces to carbon-supported high surface area catalysts. Electrochim Acta 53(7):3181–3188CrossRefGoogle Scholar
  21. 21.
    Paulus UA et al (2002) Oxygen reduction on high surface area Pt-based alloy catalysts in comparison to well defined smooth bulk alloy electrodes. Electrochim Acta 47(22–23):3787–3798CrossRefGoogle Scholar
  22. 22.
    Paulus UA et al (2001) Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study. J Electroanal Chem 495(2):134–145CrossRefGoogle Scholar
  23. 23.
    Schmidt TJ et al (1998) Characterization of high-surface area electrocatalysts using a rotating disk electrode configuration. J Electrochem Soc 145(7):2354–2358CrossRefGoogle Scholar
  24. 24.
    Mayrhofer KJJ et al (2008) Fuel cell catalyst degradation on the nanoscale. Electrochem Commun 10(8):1144–1147CrossRefGoogle Scholar
  25. 25.
    Mayrhofer KJJ et al (2008) Non-destructive transmission electron microscopy study of catalyst degradation under electrochemical treatment. J Power Sources 185(2):734–739CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sean James Ashton
    • 1
  1. 1.Department of ChemistryUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations