Ranking and Sparsifying a Connection Graph

  • Fan Chung
  • Wenbo Zhao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7323)


Many problems arising in dealing with high-dimensional data sets involve connection graphs in which each edge is associated with both an edge weight and a d-dimensional linear transformation. We consider vectorized versions of the PageRank and effective resistance which can be used as basic tools for organizing and analyzing complex data sets. For example, the generalized PageRank and effective resistance can be utilized to derive and modify diffusion distances for vector diffusion maps in data and image processing. Furthermore, the edge ranking of the connection graphs determined by the vectorized PageRank and effective resistance are an essential part of sparsification algorithms which simplify and preserve the global structure of connection graphs.


Edge Weight Transition Probability Matrix Network Design Problem Underlying Graph Weighted Degree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Achlioptas, D.: Database-friendly random projections. In: Proceedings of the 20th ACM Symposium on Principles of Database Systems, pp. 274–281 (2001)Google Scholar
  2. 2.
    Agarwal, S., Snavely, N., Simon, I., Seitz, S.M., Szeliski, R.: Building Rome in a Day. In: Proceedings of the 12th IEEE International Conference on Computer Vision, pp. 72–79 (2009)Google Scholar
  3. 3.
    Andersen, R., Chung, F., Lang, K.: Local graph partitioning using pagerank vectors. In: Proceedings of the 47th IEEE Symposium on Founation of Computer Science, pp. 475–486 (2006)Google Scholar
  4. 4.
    Anderson, G.W., Guionnet, A., Zeitouni, O.: An introduction to random matrices. Cambridge University Press (2010)Google Scholar
  5. 5.
    Benczúr, A.A., Karger, D.R.: Approximating s-t minimum cuts in Õ(n 2) time. In: Proceedings of the 28th ACM Symposium on Theory of Computing, pp. 47–55 (1996)Google Scholar
  6. 6.
    Berkhin, P.: Bookmark-coloring approach to personalized pagerank computing. Internet Mathematics 3, 41–62 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems 30(1-7), 107–117 (1998)CrossRefGoogle Scholar
  8. 8.
    Chung, F., Radcliffe, M.: On the spectra of general random graphs. Electronic Journal of Combinatorics 18(1), 215–229 (2011)MathSciNetGoogle Scholar
  9. 9.
    Chung, F., Sternberg, S.: Laplacian and vibrational spectra for homogeneous graphs. J. Graph Theory 16, 605–627 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Cristofides, D., Markström, K.: Expansion properties of random Cayley graphs and vertex transitive graphs via matrix martingales. Random Structures Algorithms 32(8), 88–100 (2008)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Cucuringu, M., Lipman, Y., Singer, A.: Sensor network localization by eigenvector synchronization over the Euclidean group. ACM Transactions on Sensor Networks (in press)Google Scholar
  12. 12.
    Firat, A., Chatterjee, S., Yilmaz, M.: Genetic clustering of social networks using random walks. Computational Statistics and Data Analysis 51(12), 6285–6294 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Fouss, F., Pirotte, A., Renders, J.-M., Saerens, M.: Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation. Knowledge and Data Engineering 19(3), 355–369 (2007)CrossRefGoogle Scholar
  14. 14.
    Golub, G.H., Van Loan, C.F.: Matrix computations, 3rd edn., pp. 257–258. Johns Hopkins, Baltimore (1996)zbMATHGoogle Scholar
  15. 15.
    Hadani, R., Singer, A.: Representation theoretic patterns in three dimensional cryo-electron microscopy I - the intrinsic reconstitution algorithm. Annals of Mathematics 174(2), 1219–1241 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Herbster, M., Pontil, M., Rojas, S.: Fast Prediction on a Tree. In: Proceedings of the Neural Information Processing Systems Foundation, pp. 657–664 (2008)Google Scholar
  17. 17.
    Jeh, G., Widom, J.: Scaling personalized web search. In: Proceedings of the 12th World Wide Web Conference WWW, pp. 271–279 (2003)Google Scholar
  18. 18.
    Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer Series in Statistics (2002)Google Scholar
  19. 19.
    Karger, D.R.: Random sampling in cut, flow, and network design problems. Mathematics of Operations Research 24(2), 383–413 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Karger, D.R.: Using randomized sparsification to approximate minimum cuts. In: Proceedings of the 15th ACM Symposium on Discrete Algorithms, pp. 424–432 (1994)Google Scholar
  21. 21.
    Karger, D.R.: Minimum cuts in near-linear time. Journal of the ACM 47(1), 46–76 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Kirchhoff, F.: Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird. Ann. Phys. Chem. 72, 497–508 (1847)Google Scholar
  23. 23.
    Koutis, I., Miller, G.L., Peng, R.: Approaching Optimality for Solving SDD Linear Systems. In: Proceedings of 51st IEEE Symposium on Foundations of Computer Science, pp. 235–244 (2010)Google Scholar
  24. 24.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the 7th IEEE International Conference on Computer Vision, pp. 1150–1157 (1999)Google Scholar
  25. 25.
    Penrose, R.: A generalized inverse for matrices. Cambridge Philosophical Society 51, 406–413 (1955)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Recht, B.: Simpler approach to matrix completion. Journal of Machine Learning Research (to appear)Google Scholar
  27. 27.
    Singer, A.: Angular synchronization by eigenvectors and semidefinite programming. Applied and Computational Harmonic Analysis 30(1), 20–36 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Singer, A., Zhao, Z., Shkolnisky, Y., Hadani, R.: Viewing angle classification of cryo-electron microscopy images using eigenvectors. SIAM Journal on Imaging Sciences 4(2), 723–759 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Singer, A., Wu, H.-T.: Vector Diffusion Maps and the Connection Laplacian. Communications on Pure and Applied Mathematics (to appear)Google Scholar
  30. 30.
    Spielman, D.A., Teng, S.-H.: Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems. In: Proceedings of the 36th ACM Symposium on Theory of Computing, pp. 81–90 (2004)Google Scholar
  31. 31.
    Spielman, D.A., Teng, S.-H.: Nearly-linear time algorithms for preconditioning and solving symmetric, diagonally dominant linear systems (2006),
  32. 32.
    Spielman, D.A., Teng, S.-H.: Spectral Sparsification of Graphs (2010),
  33. 33.
    Spielman, D.A., Srivastava, N.: Graph sparsification by effective resistances. In: Proceedings of 40th ACM Symposium on Theory of Computing, pp. 563–568 (2008)Google Scholar
  34. 34.
    Tropp, J.: User-Friendly Tail Bounds for Sums of Random Matrices,
  35. 35.
    Vu, V.: Spectral norm of random matrices. Combinatorica 27(6), 721–736 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Wigderson, A., Xiao, D.: Derandomizing the Ahlswede-Winter matrix-valued Chernoff bound using pessimistic estimators, and applications. Theory of Computing 4(1), 53–76 (2008)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Fan Chung
    • 1
    • 2
  • Wenbo Zhao
    • 2
  1. 1.Department of MathematicsUniversity of CaliforniaSan Diego, La JollaUSA
  2. 2.Department of Computer Science and EngineeringUniversity of CaliforniaSan Diego, La JollaUSA

Personalised recommendations