Some Typical Properties of the Spatial Preferred Attachment Model

  • Colin Cooper
  • Alan Frieze
  • Paweł Prałat
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7323)

Abstract

We investigate a stochastic model for complex networks, based on a spatial embedding of the nodes, called the Spatial Preferred Attachment (SPA) model. In the SPA model, nodes have spheres of influence of varying size, and new nodes may only link to a node if they fall within its influence region. The spatial embedding of the nodes models the background knowledge or identity of the node, which influences its link environment. In this paper, we focus on the (directed) diameter, small separators, and the (weak) giant component of the model.

Keywords

Random Graph Small Separator Giant Component Geometric Graph Small World Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adamic, L.A., Buyukkokten, O., Adar, E.: A social network caught in the web. First Monday 8 (2003)Google Scholar
  2. 2.
    Ahn, Y., Han, S., Kwak, H., Moon, S., Jeong, H.: Analysis of topological characteristics of huge on-line social networking services. In: Proceedings of the 16th International Conference on World Wide Web (2007)Google Scholar
  3. 3.
    Aiello, W., Bonato, A., Cooper, C., Janssen, J., Prałat, P.: A spatial web graph model with local influence regions. Internet Mathematics 5, 175–196 (2009)CrossRefGoogle Scholar
  4. 4.
    Aiello, W., Bonato, A., Cooper, C., Janssen, J., Prałat, P.: A Spatial Web Graph Model with Local Influence Regions. In: Bonato, A., Chung, F.R.K. (eds.) WAW 2007. LNCS, vol. 4863, pp. 96–107. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Barabási, A., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Blandford, D., Blelloch, G.E., Kash, I.: Compact Representations of Separable Graphs. In: Proc. of ACM/SIAM Symposium on Discrete Algorithms, pp. 679–688 (2003)Google Scholar
  7. 7.
    Bollobás, B., Riordan, O.: Mathematical results on scale-free graphs. In: Bornholdt, S., Schuster, H. (eds.) Handbook of Graphs and Networks. Wiley-VCH, Berlin (2002)Google Scholar
  8. 8.
    Bollobás, B., Riordan, O.: The diameter of a scale-free random graph. Combinatorica 4, 5–34 (2004)CrossRefGoogle Scholar
  9. 9.
    Bonato, A.: A course on the web graph. American Mathematical Society Graduate Studies in Mathematics 89 (2008)Google Scholar
  10. 10.
    Bonato, A., Janssen, J., Prałat, P.: Geometric Protean Graphs. Internet Mathematics 8, 2–28 (2012)CrossRefGoogle Scholar
  11. 11.
    Bradonjic, M., Hagberg, A., Percus, A.G.: The structure of geographical threshold graphs. Internet Mathematics 4, 113–139 (2009)MathSciNetGoogle Scholar
  12. 12.
    Chung, F.R.K., Lu, L.: Complex Graphs and Networks. American Mathematical Society (2006)Google Scholar
  13. 13.
    Estrada, E.: Spectral scaling and good expansion properties in complex networks. Europhysics Letters 73(4), 649–655 (2006)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Faloutsos, M., Faloutsos, P., Faloutsos, C.: On Power-law Relationships of the Internet Topology. In: SIGCOMM, pp. 251–262 (1999)Google Scholar
  15. 15.
    Flaxman, A., Frieze, A.M., Vera, J.: A geometric preferential attachment model of networks. Internet Mathematics 3(2), 187–206 (2006)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Flaxman, A., Frieze, A.M., Vera, J.: A geometric preferential attachment model of networks II. Internet Mathematics 4(1), 87–111 (2008)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Higham, D.J., Rasajski, M., Przulj, N.: Fitting a geometric graph to a protein-protein interaction network. Bioinformatics 24(8), 1093–1099 (2008)CrossRefGoogle Scholar
  18. 18.
    Janssen, J.: Spatial Models for Virtual Networks. In: Ferreira, F., Löwe, B., Mayordomo, E., Mendes Gomes, L. (eds.) CiE 2010. LNCS, vol. 6158, pp. 201–210. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Janssen, J., Prałat, P., Wilson, R.: Geometric Graph Properties of the Spatial Preferred Attachment model (preprint)Google Scholar
  20. 20.
    Janssen, J., Prałat, P., Wilson, R.: Estimating node similarity from co-citation in a spatial graph model. In: Proceedings of the 2010 ACM Symposium on Applied Computing–Special Track on Self-organizing Complex Systems, pp. 1329–1333 (2010)Google Scholar
  21. 21.
    Java, A., Song, X., Finin, T., Tseng, B.: Why we twitter: understanding microblogging usage and communities. In: Proceedings of the Joint 9th WEBKDD and 1st SNA-KDD Workshop 2007 (2007)Google Scholar
  22. 22.
    Kleinberg, J.: The small-world phenomenon: An algorithmic perspective. In: Proceedings of the 32nd ACM Symposium on Theory of Computing (2000)Google Scholar
  23. 23.
    Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a news media? In: Proceedings of the 19th International World Wide Web Conference (2010)Google Scholar
  24. 24.
    Masuda, N., Miwa, M., Konno, N.: Geographical threshold graphs with small-world and scale-free properties. Phys. Rev. E 71(3), 036108 (2005)Google Scholar
  25. 25.
    Mihail, M., Papadimitriou, C.H., Saberi, A.: On Certain Connectivity Properties of the Internet Topology. In: Proc. IEEE Symposium on Foundations of Computer Science, p. 28 (2003)Google Scholar
  26. 26.
    Mislove, A., Marcon, M., Gummadi, K., Druschel, P., Bhattacharjee, B.: Measurement and analysis of on-line social networks. In: Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement (2007)Google Scholar
  27. 27.
    Mitzenmacher, M.: A brief history of generative models for power law and lognormal distributions. In: Proc. of the 39th Annual Allerton Conf. on Communication, Control, and Computing, pp. 182–191 (2001)Google Scholar
  28. 28.
    Yule, G.: A mathematical theory of evolution based on the conclusions of Dr. J.C. Willis. Philosophical Transactions of the Royal Society of London (Series B) 213, 21–87 (1924)CrossRefGoogle Scholar
  29. 29.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Colin Cooper
    • 1
  • Alan Frieze
    • 2
  • Paweł Prałat
    • 3
  1. 1.Department of Computer ScienceKings College, University of LondonLondonUK
  2. 2.Department of Mathematical SciencesCarnegie Mellon UniversityPittsburghU.S.A
  3. 3.Department of MathematicsRyerson UniversityTorontoCanada

Personalised recommendations