On a DAG Partitioning Problem

  • Soroush Alamdari
  • Abbas Mehrabian
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7323)


We study the following DAG Partitioning problem: given a directed acyclic graph with arc weights, delete a set of arcs of minimum total weight so that each of the resulting connected components has exactly one sink. We prove that the problem is hard to approximate in a strong sense: If \(\mathcal P\neq \mathcal{NP}\) then for every fixed ε > 0, there is no (n 1 − ε )-approximation algorithm, even if the input graph is restricted to have unit weight arcs, maximum out-degree three, and two sinks. We also present a polynomial time algorithm for solving the DAG Partitioning problem in graphs with bounded pathwidth.


DAG Partitioning Inapproximability Reduction 3-SAT pathwidth fixed parameter tractable 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adar, E., Adamic, L.A.: Tracking information epidemics in blogspace. In: Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2005, pp. 207–214. IEEE Computer Society, Washington, DC (2005), CrossRefGoogle Scholar
  2. 2.
    Adar, E., Zhang, L., Adamic, L.A., Lukose, R.M.: Implicit Structure and the Dynamics of Blogspace. In: WWW 2004 Workshop on the Weblogging Ecosystem: Aggregation, Analysis and Dynamics. ACM Press, New York (2004)Google Scholar
  3. 3.
    Berger, B., Shor, P.W.: Approximation alogorithms for the maximum acyclic subgraph problem. In: Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 1990, pp. 236–243. Society for Industrial and Applied Mathematics, Philadelphia (1990), Google Scholar
  4. 4.
    Blei, D.M., Lafferty, J.D.: Dynamic topic models. In: Proceedings of the 23rd International Conference on Machine Learning, ICML 2006, pp. 113–120. ACM, New York (2006), CrossRefGoogle Scholar
  5. 5.
    Courcelle, B.: The monadic second-order logic of graphs. i. recognizable sets of finite graphs. Inf. Comput. 85, 12–75 (1990), MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Călinescu, G., Karloff, H., Rabani, Y.: An improved approximation algorithm for multiway cut. In: Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, STOC 1998, pp. 48–52. ACM, New York (1998), CrossRefGoogle Scholar
  7. 7.
    Korach, E., Solel, N.: Tree-width, path-width, and cutwidth. Discrete Appl. Math. 43, 97–101 (1993), MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Kwon, Y.S., Kim, S.W., Park, S., Lim, S.H., Lee, J.B.: The information diffusion model in the blog world. In: Proceedings of the 3rd Workshop on Social Network Mining and Analysis, SNA-KDD 2009, pp. 4:1–4:9. ACM, New York (2009),
  9. 9.
    Leskovec, J., Backstrom, L., Kleinberg, J.: Meme-tracking and the dynamics of the news cycle. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2009, pp. 497–506. ACM, New York (2009), CrossRefGoogle Scholar
  10. 10.
    Leskovec, J., McGlohon, M., Faloutsos, C., Glance, N., Hurst, M.: Cascading behavior in large blog graphs: Patterns and a model. In: Society of Applied and Industrial Mathematics: Data Mining, SDM 2007 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Soroush Alamdari
    • 1
  • Abbas Mehrabian
    • 2
  1. 1.David R. Cheriton School of Computer ScienceUniversity of WaterlooCanada
  2. 2.Department of Combinatorics and OptimizationUniversity of WaterlooCanada

Personalised recommendations