Advertisement

Multi-commodity Allocation for Dynamic Demands Using PageRank Vectors

  • Fan Chung
  • Paul Horn
  • Jacob Hughes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7323)

Abstract

We consider a variant of the contact process concerning multi-commodity allocation on networks. In this process, the demands for several types of commodities are initially given at some specified vertices and then the demands spread interactively on a contact graph. To allocate supplies in such a dynamic setting, we use a modified version of PageRank vectors, called Kronecker PageRank, to identify vertices for shipping supplies. We analyze both the situation that the demand distribution evolves mostly in clusters around the initial vertices and the case that the demands spread to the whole network. We establish sharp upper bounds for the probability that the demands are satisfied as a function of PageRank vectors.

Keywords

Supply Rate Dirichlet Process Spread Matrix Poisson Point Process Spread Event 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andersen, R., Chung, F., Lang, K.: Local Partitioning for Directed Graphs Using PageRank. In: Bonato, A., Chung, F.R.K. (eds.) WAW 2007. LNCS, vol. 4863, pp. 166–178. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Borgs, C., Chayes, J., Ganesh, A., Saberi, A.: How to distribute antidote to control epidemics. Random Structures & Algorithms 37, 204–222 (2010)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Computer Networks and ISDN Systems 30, 107–117 (1998)CrossRefGoogle Scholar
  4. 4.
    Chevaleyre, Y., Dunne, P., Endriss, U., Lang, J., Lemaitre, M., Maudet, N., Padget, J., Phelps, S., Rodriguez-Aguilar, J., Sousa, P.: Issues in multiagent resource allocation. Informatica (2006)Google Scholar
  5. 5.
    Chung, F., Horn, P., Tsiatas, A.: Distributing antidote using PageRank vectors. Internet Mathematics 6, 237–254 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Dahlquist, G.: Stability and error bounds in the numerical integration of ordinary differential equations. Kungl. Tekn. Högsk. Handl. Stockholm. (130), 87 (1959)Google Scholar
  7. 7.
    Ganesh, A., Massoulie, L., Towsley, D.: The effect of network topology on the spread of epidemics, vol. 2, pp. 1455–1466. IEEE (2005)Google Scholar
  8. 8.
    Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press (1990)Google Scholar
  9. 9.
    Kiss, I.Z., Green, D.M., Kao, R.R.: Infectious disease control using contact tracing in random and scale-free networks. Journal of the Royal Society, Interface / the Royal Society 3, 55–62 (2006), PMID: 16849217CrossRefGoogle Scholar
  10. 10.
    Merino, C.: The chip-firing game. Discrete Mathematics 302, 188–210 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Newman, M.: Spread of epidemic disease on networks. Physical Review E 66 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Fan Chung
    • 1
  • Paul Horn
    • 2
  • Jacob Hughes
    • 1
  1. 1.University of CaliforniaSan DiegoUSA
  2. 2.Harvard UniversityUSA

Personalised recommendations