Advertisement

The ATLAS Experiment

  • Caterina Doglioni
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The study of new phenomena in particle physics at the Terascale, the discovery of the Higgs boson and further measurements of Standard Model quantities are among the main goals of the experiments located on the Large Hadron Collider (LHC), at CERN in Geneva. At the LHC, proton beams with a centre of mass energy of 7 Tev collide up to every 50 ns at the four interaction points, where the experiments are installed. The ATLAS (A Toroidal LHC ApparatuS) experiment is a general purpose detector located at the Interaction Point 1 on the French–Swiss border, and has been recording collision data at 7 Tev starting from the Spring of 2010.

Keywords

Higgs Boson Large Hadron Collider Atlas Detector Electromagnetic Calorimeter Liquid Argon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    ATLAS Experiment ©2011 CERN. http://www.atlas.ch/photos/index.html
  2. 2.
    ATLAS Collaboration, In-situ Jet Energy Scale and Jet Shape Corrections for Multiple Interactions in the First ATLAS Data at the LHC, ATLAS-CONF-2011-030, CERN, Geneva, Feb 2011Google Scholar
  3. 3.
    ATLAS Collaboration, G. Aad et al., Luminosity determination in pp collisions at \(\sqrt{(s)}=7\) TeV using the ATLAS detector at the LHC. Eur. Phys. J. C 71, 1630 (2011) arXiv:1101.2185 [hep-ex]Google Scholar
  4. 4.
    Updated Luminosity Determination in pp Collisions at \(\sqrt{(s)}=7\) TeV using the ATLAS Detector, ATLAS-CONF-2011-011, CERN, Geneva, March 2011Google Scholar
  5. 5.
    ATLAS Collaboration, The ATLAS experiment at the CERN large hadron collider. JINST 3, S08003 (2008)Google Scholar
  6. 6.
    ATLAS Collaboration, Expected Performance of the ATLAS Experiment Detector, Trigger, Physics, CERN-OPEN-2008-020, CERN, Geneva, Sept 2010Google Scholar
  7. 7.
    T. Cornelissen, M. Elsing, S. Fleischmann, W. Liebig, E. Moyse, A. Salzburger, Concepts, Design and Implementation of the ATLAS New Tracking (NEWT), ATL-SOFT-PUB-2007-007, CERN, Geneva, March 2007Google Scholar
  8. 8.
    R. Wigmans, Advances in Hadron Calorimetry. CERN-PPE-91-39, Feb 1991Google Scholar
  9. 9.
    ATLAS Electromagnetic Liquid Argon Calorimeter Group Collaboration, B. Aubert et al., Performance of the ATLAS electromagnetic calorimeter barrel module 0. Nucl. Instrum. Methods A 500, 202–231 (2003)Google Scholar
  10. 10.
    M. Aharrouche et al., Energy linearity and resolution of the ATLAS electromagnetic barrel calorimeter in an electron test-beam. Nucl. Instrum. Methods A 568, 601–623 (2006)Google Scholar
  11. 11.
    A. Bazan, The ATLAS liquid argon calorimeter read-out system. IEEE Trans. Nucl. Sci. 53, 735–740 (2006)Google Scholar
  12. 12.
  13. 13.
  14. 14.
    W. Lampl et al., Calorimeter Clustering Algorithms: Description and Performance, ATL-LARG-PUB-2008-002, CERN, Geneva, April 2008Google Scholar
  15. 15.
    R. Sacco, Position Resolution of an ATLAS Electromagnetic Calorimeter Module, ATL-LARG-2003-008,CERN, Geneva, July 2003Google Scholar
  16. 16.
    J. Colas et al., Response uniformity of the ATLAS liquid argon electromagnetic calorimeter. Nucl. Instrum. Methods A 582, 429–455 (2007) arXiv:0709.1094 [physics.ins-det]Google Scholar
  17. 17.
    M. Aharrouche et al., Measurement of the response of the ATLAS liquid argon barrel calorimeter to electrons at the 2004 combined test-beam. Nucl. Instrum. Methods A 614, 400–432 (2010)Google Scholar
  18. 18.
    E. Abat et al., Combined performance studies for electrons at the 2004 ATLAS combined test-beam. JINST 5, P11006 (2010)Google Scholar
  19. 19.
    J. Pinfold et al., Performance of the ATLAS liquid argon endcap calorimeter in the pseudorapidity region \(2.5 < |\eta | < 4.0\) in beam tests. Nucl. Instrum. Methods A 593, 324–342 (2008)Google Scholar
  20. 20.
    C. Cojocaru et al., Hadronic calibration of the ATLAS liquid argon end-cap calorimeter in the pseudorapidity region \(1.6<[\eta ]<1.8\) in beam tests. Nucl. Instrum. Methods A 531(3), 481–514 (2004)Google Scholar
  21. 21.
    M. Aharrouche et al., Study of the response of ATLAS electromagnetic liquid argon calorimeters to muons. Nucl. Instrum. Methods A 606, 419–431 (2009)Google Scholar
  22. 22.
    ATLAS Collaboration, Readiness of the ATLAS liquid argon calorimeter for LHC collisions. Eur. Phys. J. C 70, 1193–1236 (2010) arXiv:1007.5423 [physics.ins-det]Google Scholar
  23. 23.
    ATLAS Collaboration, Electron performance measurements with the ATLAS detector using the 2010 LHC proton-proton collision data, ATL-COM-PHYS-2011-263 [Internal note], CERN, Geneva, In preparation, 2011Google Scholar
  24. 24.
    G. Usai, Signal Reconstruction of the ATLAS Hadronic tile Calorimeter: Implementation and Performance, ATL-TILECAL-PROC-2010-008, CERN, Geneva, Aug 2010Google Scholar
  25. 25.
    P. Adragna et al., Testbeam studies of production modules of the ATLAS Tile calorimeter. Nucl. Instrum. Methods A 606, 362–394 (2009)Google Scholar
  26. 26.
    ATLAS Collaboration, Readiness of the ATLAS tile calorimeter for LHC collisions. Eur. Phys. J. C 70, 1193–1236 (2010) arXiv:1007.5423 [physics.ins-det]Google Scholar
  27. 27.
    Z. Weng, Calibration of the ATLAS Hadronic Barrel Calorimeter TileCal using 2008, 2009 and 2010 Cosmic Rays Data, ATL-TILECAL-SLIDE-2011-247, June 2011Google Scholar
  28. 28.
    A. Collaboration, Calibration of the ATLAS Hadronic Barrel Calorimeter TileCal using 2008, 2009 and 2010 Cosmic Rays Data, ATL-TILECAL-PUB-2011-001, CERN, Geneva, Sept 2011Google Scholar
  29. 29.
    GEANT4 Collaboration, S. Agostinelli et al., GEANT4: A simulation toolkit. Nucl. Instrum. Methods A 506, 250–303 (2003)Google Scholar
  30. 30.
    ATLAS Collaboration, The ATLAS simulation infrastructure. Eur. Phys. J. C 70, 823–874 (2010)Google Scholar
  31. 31.
    A. Ribon et al., Status of Geant4 Hadronic Physics for the Simulation of LHC Experiments at the LHC Physics Program, CERN-LC GAPP-2010-02, CERN, Geneva, May 2010Google Scholar
  32. 32.
    G. Folger, J.P. Wellisch, String parton models in Geant4, arXiv:nucl-th/0306007Google Scholar
  33. 33.
    H.W. Bertini, Intranuclear-cascade calculation of the secondary nucleon spectra from nucleon-nucleus interactions in the energy range 340 to 2,900 mev and comparisons with experiment. Phys. Rev. A 188, 1711–1730 (1969)Google Scholar
  34. 34.
    P. Adragna et al., Measurement of pion and proton response and longitudinal shower profiles up to 20 nuclear interaction lengths with the ATLAS Tile calorimeter. Nucl. Instrum. Methods A 615, 158–181 (2010)Google Scholar
  35. 35.
    ATLAS Collaboration, Response and Shower Topology of 2 to 180 GeV Pions Measured with the ATLAS Barrel Calorimeter at the CERN Test-beam and Comparison to Monte Carlo Simulations, ATL-CAL-PUB-2010-001, CERN, Geneva, May 2010Google Scholar
  36. 36.
    ATLAS Collaboration, Study of energy response and resolution of the ATLAS barrel calorimeter to hadrons of energies from 20-GeV to 350-GeV. Nucl. Instrum. Methods A 621, 134–150 (2010)Google Scholar
  37. 37.
    ATLAS Collaboration, Study of the response of the ATLAS central calorimeter to pions of energies from 3 to 9 GeV. Nucl. Instrum. Methods A 607(2), 372–386 (2009)Google Scholar
  38. 38.
    A.E. Kiryunin, H. Oberlack, D. Salihagic, P. Schacht, P. Strizenec, GEANT4 physics evaluation with testbeam data of the ATLAS hadronic end-cap calorimeter. Nucl. Instrum. Methods A 560, 278–290 (2006)Google Scholar
  39. 39.
    ATLAS Collaboration, Response of Isolated Particles Identified using Resonances in Proton–Proton Collisions at \(\sqrt{s} =7 \) TeV with the ATLAS Detector, ATLAS-CONF-2011-019, CERN, Geneva, Feb 2011Google Scholar
  40. 40.
    ATLAS Collaboration, Mapping the Material in the ATLAS Inner Detector using Secondary Hadronic Interactions in 7 TeV Collisions, ATLAS-CONF-2010-058, CERN, Geneva, July 2010Google Scholar
  41. 41.
    ATLAS Collaboration, Study of the Material Budget in the ATLAS Inner Detector with \(K^0_S\) Decays in Collision Data at \(\sqrt{s}=900 \) GeV, ATLAS-CONF-2010-019, CERN, Geneva, July 2010Google Scholar
  42. 42.
    G. Barrand et al., GAUDI—A software architecture and framework for building HEP data processing applications. Comput. Phys. Commun. 140, 45–55 (2001)Google Scholar
  43. 43.
    Performance of the Minimum Bias Trigger in p-p Collisions at \(\sqrt{s} = 900\) GeV, ATLAS-CONF-2010-025, CERN, Geneva, July 2010Google Scholar
  44. 44.
    R.E. Kwee, Minimum Bias Trigger in ATLAS, ATL-DAQ-PROC-2010-055, CERN, Geneva, Dec 2010Google Scholar
  45. 45.
    Performance of the ATLAS Jet Trigger in the Early \(\sqrt{s}=7\) TeV Data, ATLAS-CONF-2010-094, CERN, Geneva, Oct 2010Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Caterina Doglioni
    • 1
  1. 1.University of OxfordOxfordUK

Personalised recommendations