Outer Membrane Vesicles: Physiological Medical Applications

  • S. N. ChatterjeeEmail author
  • Keya Chaudhuri
Part of the SpringerBriefs in Microbiology book series (BRIEFSMICROBIOL)


Outer membrane vesicles (OMVs) produced by Gram-negative bacteria exhibit enormous functional diversity depending on the bacterial species and environmental niche: these have enabled various physiological roles for these vesicles to play and at the same time OMVs have found important medical applications. The interaction of OMVs with the host can lead to varied innate immune responses such as direct interaction with immune cells, triggering of cell-mediated immunity, or activation of proinflammatory response leading to cytotoxicity. OMVs were found to carry antigenically active virulence factors and the potential of OMVs for nonreplicating vaccines has been explored in several Gram-negative organisms in animal models. OMVs are being licensed and used for vaccination in combating Neisseria meningitidis serogroup B infections.


Innate immune response B cell Complement system Cell-mediated immunity Proinflammatory response Immunogen Vaccine Detergent-treated OMVs Native OMVs Combination vaccines Recombinant OMV vaccines  Reverse vaccinology Adjuvant 


  1. Alaniz RC, Deatherage BL, Lara JC, Cookson BT (2007) Membrane vesicles are immunogenic facsimiles of Salmonella typhimurium that potently activate dendritic cells, prime B and T cell responses, and stimulate protective immunity in vivo. J Immunol 179:7692–7701PubMedGoogle Scholar
  2. Ameratunga S, Macmillan A, Stewart J, Scott D, Mulholland K, Crengle S (2005) Evaluating the post-licensure effectiveness of a group B meningococcal vaccine in New Zealand: a multi-faceted strategy. Vaccine 23:2231–2234PubMedGoogle Scholar
  3. Asensio CJ, Gaillard ME, Moreno G, Bottero D, Zurita E et al (2011) Outer membrane vesicles obtained from Bordetella pertussis Tohama expressing the lipid A deacylase PagL as a novel acellular vaccine candidate. Vaccine 29:1649–1656PubMedGoogle Scholar
  4. Attia AS, Ram S, Rice PA, Hansen EJ (2006) Binding of vitronectin by the Moraxella catarrhalis UspA2 protein interferes with late stages of the complement cascade. Infect Immun 74:1597–1611PubMedGoogle Scholar
  5. Azadegan AA, Schell RF, LeFrock JL (1983) Immune serum confers protection against syphilitic infection on hamsters. Infect Immun 42:42–47PubMedGoogle Scholar
  6. Baker MG, Martin DR, Kieft CE, Lennon D (2001) A 10-year serogroup B meningococcal disease epidemic in New Zealand: descriptive epidemiology, 1991–2000. J Paediatr Child Health 37:S13–S19PubMedGoogle Scholar
  7. Bauman SJ, Kuehn MJ (2009) Pseudomonas aeruginosa vesicles associate with and are internalized by human lung epithelial cells. BMC Microbiol 9:26PubMedGoogle Scholar
  8. Beernink PT, Leipus A, Granoff DM (2006) Rapid genetic grouping of factor h-binding protein (genome-derived Neisserial antigen 1870), a promising group B meningococcal vaccine candidate. Clin Vaccine Immunol 13:758–763PubMedGoogle Scholar
  9. Bennish ML (1994) Cholera: pathophysiology, clinical features, and treatment. In: Wachsmuth KI, Blake PA, Olsik O (eds) Vibrio cholerae and cholera: molecular to global perspectives. ASM Press, Washington, DCGoogle Scholar
  10. Bergman MA, Cummings LA, Barrett SL, Smith KD, Lara JC, Aderem A, Cookson BT (2005) CD4 + T cells and toll-like receptors recognize Salmonella antigens expressed in bacterial surface organelles. Infect Immun 73:1350–1356PubMedGoogle Scholar
  11. Beveridge TJ (1999) Structures of gram-negative cell walls and their derived membrane vesicles. J Bacteriol 181:4725–4733PubMedGoogle Scholar
  12. Bilukha OO, Rosenstein N (2005) Prevention and control of meningococcal disease. Recommendations of the advisory committee on immunization practices (ACIP). MMWR Recomm Rep 54:1–21PubMedGoogle Scholar
  13. Bishop NH, Miller JN (1983) Humoral immune mechanisms in acquired syphilis. In: Schell RF, Musher DM (eds) Pathogenesis and immunology of treponemal infection. Marcel Dekker, New YorkGoogle Scholar
  14. Bjerre A, Brusletto B, Mollnes TE, Fritzsonn E, Rosenqvist E et al (2002) Complement activation induced by purified Neisseria meningitidis lipopolysaccharide (LPS), outer membrane vesicles, whole bacteria, and an LPS-free mutant. J Infect Dis 185:220–228PubMedGoogle Scholar
  15. Bjune G, Gronnesby JK, Hoiby EA, Closs O, Nokleby H (1991a) Results of an efficacy trial with an outer membrane vesicle vaccine against systemic serogroup B meningococcal disease in Norway. NIPH Ann 14:125–130; discussion 130–122Google Scholar
  16. Bjune G, Hoiby EA, Gronnesby JK, Arnesen O, Fredriksen JH et al (1991b) Effect of outer membrane vesicle vaccine against group B meningococcal disease in Norway. Lancet 338:1093–1096PubMedGoogle Scholar
  17. Blanco DR, Walker EM, Haake DA, Champion CI, Miller JN, Lovett MA (1990) Complement activation limits the rate of in vitro treponemicidal activity and correlates with antibody-mediated aggregation of Treponema pallidum rare outer membrane protein. J Immunol 144:1914–1921PubMedGoogle Scholar
  18. Blanco DR, Champion CI, Lewinski MA, Shang ES, Simkins SG, Miller JN, Lovett MA (1999) Immunization with Treponema pallidum outer membrane vesicles induces high-titer complement-dependent treponemicidal activity and aggregation of T. pallidum rare outer membrane proteins (TROMPs). J Immunol 163:2741–2746PubMedGoogle Scholar
  19. Blom AM, Hallstrom T, Riesbeck K (2009) Complement evasion strategies of pathogens-acquisition of inhibitors and beyond. Mol Immunol 46:2808–2817PubMedGoogle Scholar
  20. Borrow R, Aaberge IS, Santos GF, Eudey TL, Oster P et al (2005) Interlaboratory standardization of the measurement of serum bactericidal activity by using human complement against meningococcal serogroup b, strain 44/76-SL, before and after vaccination with the Norwegian MenBvac outer membrane vesicle vaccine. Clin Diagn Lab Immunol 12:970–976PubMedGoogle Scholar
  21. Boslego J, Garcia J, Cruz C, Zollinger W, Brandt B et al (1995) Efficacy, safety, and immunogenicity of a meningococcal group B (15:P1.3) outer membrane protein vaccine in Iquique, Chile. Chilean national committee for meningococcal disease. Vaccine 13:821–829PubMedGoogle Scholar
  22. Boutriau D, Poolman J, Borrow R, Findlow J, Domingo JD et al (2007) Immunogenicity and safety of three doses of a bivalent (B:4:p1.19,15 and B:4:p1.7-2,4) meningococcal outer membrane vesicle vaccine in healthy adolescents. Clin Vaccine Immunol 14:65–73PubMedGoogle Scholar
  23. Bruge J, Bouveret-Le Cam N, Danve B, Rougon G, Schulz D (2004) Clinical evaluation of a group B meningococcal N-propionylated polysaccharide conjugate vaccine in adult, male volunteers. Vaccine 22:1087–1096PubMedGoogle Scholar
  24. Camacho AI, de Souza J, Sanchez-Gomez S, Pardo-Ros M, Irache JM, Gamazo C (2011) Mucosal immunization with Shigella flexneri outer membrane vesicles induced protection in mice. Vaccine 29:8222–8229PubMedGoogle Scholar
  25. Cartwright K, Morris R, Rumke H, Fox A, Borrow R et al (1999) Immunogenicity and reactogenicity in UK infants of a novel meningococcal vesicle vaccine containing multiple class 1 (PorA) outer membrane proteins. Vaccine 17:2612–2619PubMedGoogle Scholar
  26. Chatterjee SN, Das J (1966) Secretory activity of Vibrio cholerae as evidenced by electron microscopy. In: Uyeda (ed) Electron Microscopy. Maruzen Co. Ltd, TokyoGoogle Scholar
  27. Chatterjee SN, Das J (1967) Electron microscopic observations on the excretion of cell-wall material by Vibrio cholerae. J Gen Microbiol 49:1–11PubMedGoogle Scholar
  28. Chaturvedi A, Pierce SK (2009) How location governs toll-like receptor signaling. Traffic 10:621–628PubMedGoogle Scholar
  29. Chaudhuri K, Chatterjee SN (2009) Cholera toxins. Springer, HeidelbergGoogle Scholar
  30. Chen DJ, Osterrieder N, Metzger SM, Buckles E, Doody AM, DeLisa MP, Putnam D (2010) Delivery of foreign antigens by engineered outer membrane vesicle vaccines. Proc Natl Acad Sci U S A 107:3099–3104PubMedGoogle Scholar
  31. Claassen I, Meylis J, van der Ley P, Peeters C, Brons H et al (1996) Production, characterization and control of a Neisseria meningitidis hexavalent class 1 outer membrane protein containing vesicle vaccine. Vaccine 14:1001–1008PubMedGoogle Scholar
  32. Comanducci M, Bambini S, Brunelli B, Adu-Bobie J, Arico B et al (2002) NadA, a novel vaccine candidate of Neisseria meningitidis. J Exp Med 195:1445–1454PubMedGoogle Scholar
  33. Cookson BT, Bevan MJ (1997) Identification of a natural T cell epitope presented by Salmonella-infected macrophages and recognized by T cells from orally immunized mice. J Immunol 158:4310–4319PubMedGoogle Scholar
  34. Cox AD, Zou W, Gidney MA, Lacelle S, Plested JS et al (2005) Candidacy of LPS-based glycoconjugates to prevent invasive meningococcal disease: developmental chemistry and investigation of immunological responses following immunization of mice and rabbits. Vaccine 23:5045–5054PubMedGoogle Scholar
  35. Czerkinsky C, Holmgren J (2009) Enteric vaccines for the developing world: a challenge for mucosal immunology. Mucosal Immunol 2:284–287PubMedGoogle Scholar
  36. de Kleijn ED, de Groot R, Labadie J, Lafeber AB, van den Dobbelsteen G et al (2000) Immunogenicity and safety of a hexavalent meningococcal outer-membrane-vesicle vaccine in children of 2–3 and 7–8 years of age. Vaccine 18:1456–1466PubMedGoogle Scholar
  37. de Moraes JC, Perkins BA, Camargo MC, Hidalgo NT, Barbosa HA et al (1992) Protective efficacy of a serogroup B meningococcal vaccine in Sao Paulo, Brazil. Lancet 340:1074–1078PubMedGoogle Scholar
  38. del Castillo FJ, Moreno F, del Castillo I (2001) Secretion of the Escherichia coli K-12 SheA hemolysin is independent of its cytolytic activity. FEMS Microbiol Lett 204:281–285PubMedGoogle Scholar
  39. Desvarieux M, Demmer RT, Rundek T, Boden-Albala B, Jacobs DR Jr, Sacco RL, Papapanou PN (2005) Periodontal microbiota and carotid intima-media thickness: the Oral Infections and vascular disease epidemiology study (INVEST). Circulation 111:576–582PubMedGoogle Scholar
  40. Devoe IW, Gilchrist JE (1973) Release of endotoxin in the form of cell wall blebs during in vitro growth of Neisseria meningitidis. J Exp Med 138:1156–1167PubMedGoogle Scholar
  41. Dharakul T, Songsivilai S (1999) The many facets of melioidosis. Trends Microbiol 7:138–140PubMedGoogle Scholar
  42. Diacovich L, Gorvel JP (2010) Bacterial manipulation of innate immunity to promote infection. Nat Rev Microbiol 8:117–128PubMedGoogle Scholar
  43. Dietrich G, Griot-Wenk M, Metcalfe IC, Lang AB, Viret JF (2003) Experience with registered mucosal vaccines. Vaccine 21:678–683PubMedGoogle Scholar
  44. Drabick JJ, Brandt BL, Moran EE, Saunders NB, Shoemaker DR, Zollinger WD (1999) Safety and immunogenicity testing of an intranasal group B meningococcal native outer membrane vesicle vaccine in healthy volunteers. Vaccine 18:160–172PubMedGoogle Scholar
  45. Durand V, Mackenzie J, de Leon J, Mesa C, Quesniaux V et al (2009) Role of lipopolysaccharide in the induction of type I interferon-dependent cross-priming and IL-10 production in mice by meningococcal outer membrane vesicles. Vaccine 27:1912–1922PubMedGoogle Scholar
  46. Ellis TN, Kuehn MJ (2010) Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol Mol Biol Rev 74:81–94PubMedGoogle Scholar
  47. Ernst RK, Guina T, Miller SI (2001) Salmonella typhimurium outer membrane remodeling: role in resistance to host innate immunity. Microbes Infect 3:1327–1334PubMedGoogle Scholar
  48. Estabrook MM, Jarvis GA, McLeod Griffiss J (2007) Affinity-purified human immunoglobulin G that binds a lacto-N-neotetraose-dependent lipooligosaccharide structure is bactericidal for serogroup B Neisseria meningitidis. Infect Immun 75:1025–1033PubMedGoogle Scholar
  49. Estevez F, Carr A, Solorzano L, Valiente O, Mesa C et al (1999) Enhancement of the immune response to poorly immunogenic gangliosides after incorporation into very small size proteoliposomes (VSSP). Vaccine 18:190–197PubMedGoogle Scholar
  50. EU-IBIS (2002) Invasive Neisseria meningitidis in Europe—2002 Google Scholar
  51. Faruque SM, Albert MJ, Mekalanos JJ (1998) Epidemiology, genetics, and ecology of toxigenic Vibrio cholerae. Microbiol Mol Biol Rev 62:1301–1314PubMedGoogle Scholar
  52. Finne J, Finne U, Deagostini-Bazin H, Goridis C (1983) Occurrence of alpha 2–8 linked polysialosyl units in a neural cell adhesion molecule. Biochem Biophys Res Commun 112:482–487PubMedGoogle Scholar
  53. Fisseha M, Chen P, Brandt B, Kijek T, Moran E, Zollinger W (2005) Characterization of native outer membrane vesicles from lpxL mutant strains of Neisseria meningitidis for use in parenteral vaccination. Infect Immun 73:4070–4080PubMedGoogle Scholar
  54. Fransen F, Heckenberg SG, Hamstra HJ, Feller M, Boog CJ et al (2009) Naturally occurring lipid A mutants in Neisseria meningitidis from patients with invasive meningococcal disease are associated with reduced coagulopathy. PLoS Pathog 5:e1000396PubMedGoogle Scholar
  55. Frasch CE (1995) Meningococcal vaccines: past, present and future. In: Cartwright K (ed) Meningococcal disease. Wiley, ChichesterGoogle Scholar
  56. Frasch CE, Mocca LF (1982) Strains of Neisseria meningitidis isolated from patients and their close contacts. Infect Immun 37:155–159PubMedGoogle Scholar
  57. Frasch CE, Peppler MS (1982) Protection against group B Neisseria meningitidis disease: preparation of soluble protein and protein-polysaccharide immunogens. Infect Immun 37:271–280PubMedGoogle Scholar
  58. Frasch CE, Robbins JD (1978) Protection against group B meningococcal disease. III. Immunogenicity of serotype 2 vaccines and specificity of protection in a guinea pig model. J Exp Med 147:629–644PubMedGoogle Scholar
  59. Frasch CE, Coetzee G, Zahradnik JM, Feldman HA, KH J (1983) Development and evaluation of group B serotype 2 protein vaccines: report of a group B field trial. Med Trop 43:177–180Google Scholar
  60. Fredriksen JH, Rosenqvist E, Wedege E, Bryn K, Bjune G et al. (1991) Production, characterization and control of MenB-vaccine “Folkehelsa”: an outer membrane vesicle vaccine against group B meningococcal disease. NIPH Ann 14:67–79, discussion 79–80Google Scholar
  61. Galen JE, Zhao L, Chinchilla M, Wang JY, Pasetti MF, Green J, Levine MM (2004) Adaptation of the endogenous Salmonella enterica serovar Typhi clyA-encoded hemolysin for antigen export enhances the immunogenicity of anthrax protective antigen domain 4 expressed by the attenuated live-vector vaccine strain CVD 908-htrA. Infect Immun 72:7096–7106PubMedGoogle Scholar
  62. Garnacho J, Sole-Violan J, Sa-Borges M, Diaz E, Rello J (2003) Clinical impact of pneumonia caused by Acinetobacter baumannii in intubated patients: a matched cohort study. Crit Care Med 31:2478–2482PubMedGoogle Scholar
  63. Geurtsen J, Vandebriel RJ, Gremmer ER, Kuipers B, Tommassen J, van der Ley P (2007) Consequences of the expression of lipopolysaccharide-modifying enzymes for the efficacy and reactogenicity of whole-cell pertussis vaccines. Microbes Infect 9:1096–1103PubMedGoogle Scholar
  64. Giuliani MM, Santini L, Brunelli B, Biolchi A, Arico B et al (2005) The region comprising amino acids 100–255 of Neisseria meningitidis lipoprotein GNA 1870 elicits bactericidal antibodies. Infect Immun 73:1151–1160PubMedGoogle Scholar
  65. Gold R, Goldschneider I, Lepow ML, Draper TF, Randolph M (1978) Carriage of Neisseria meningitidis and Neisseria lactamica in infants and children. J Infect Dis 137:112–121PubMedGoogle Scholar
  66. Goldschneider I, Gotschlich EC, Artenstein MS (1969) Human immunity to the meningococcus. I. The role of humoral antibodies. J Exp Med 129:1307–1326PubMedGoogle Scholar
  67. Gorringe AR (2005) Can Neisseria lactamica antigens provide an effective vaccine to prevent meningococcal disease? Expert Rev Vaccines 4:373–379PubMedGoogle Scholar
  68. Gorringe A, Halliwell D, Matheson M, Reddin K, Finney M, Hudson M (2005) The development of a meningococcal disease vaccine based on Neisseria lactamica outer membrane vesicles. Vaccine 23:2210–2213PubMedGoogle Scholar
  69. Granoff DM, Welsch JA, Ram S (2009) Binding of complement factor H (fH) to Neisseria meningitidis is specific for human fH and inhibits complement activation by rat and rabbit sera. Infect Immun 77:764–769PubMedGoogle Scholar
  70. Guruge JL, Falk PG, Lorenz RG, Dans M, Wirth HP et al (1998) Epithelial attachment alters the outcome of Helicobacter pylori infection. Proc Natl Acad Sci U S A 95:3925–3930PubMedGoogle Scholar
  71. Hallstrom T, Riesbeck K (2010) Hemophilus influenzae and the complement system. Trends Microbiol 18:258–265PubMedGoogle Scholar
  72. Hallstrom T, Muller SA, Morgelin M, Mollenkvist A, Forsgren A, Riesbeck K (2008) The Moraxella IgD-binding protein MID/Hag is an oligomeric autotransporter. Microbes Infect 10:374–381PubMedGoogle Scholar
  73. Haneberg B, Dalseg R, Oftung F, Wedege E, Hoiby EA et al (1998) Towards a nasal vaccine against meningococcal disease, and prospects for its use as a mucosal adjuvant. Dev Biol Stand 92:127–133PubMedGoogle Scholar
  74. Haque A, Chu K, Easton A, Stevens MP, Galyov EE et al (2006) A live experimental vaccine against Burkholderia pseudomallei elicits CD4 + T cell-mediated immunity, priming T cells specific for 2 type III secretion system proteins. J Infect Dis 194:1241–1248PubMedGoogle Scholar
  75. Healey GD, Elvin SJ, Morton M, Williamson ED (2005) Humoral and cell-mediated adaptive immune responses are required for protection against Burkholderia pseudomallei challenge and bacterial clearance postinfection. Infect Immun 73:5945–5951PubMedGoogle Scholar
  76. Heiniger N, Spaniol V, Troller R, Vischer M, Aebi C (2007) A reservoir of Moraxella catarrhalis in human pharyngeal lymphoid tissue. J Infect Dis 196:1080–1087PubMedGoogle Scholar
  77. Holst J (2007) Strategies for development of universal vaccines against meningococcal serogroup B disease: the most promising options and the challenges evaluating them. Hum Vaccin 3:290–294PubMedGoogle Scholar
  78. Holst J, Feiring B, Fuglesang JE, Hoiby EA, Nokleby H, Aaberge IS, Rosenqvist E (2003) Serum bactericidal activity correlates with the vaccine efficacy of outer membrane vesicle vaccines against Neisseria meningitidis serogroup B disease. Vaccine 21:734–737PubMedGoogle Scholar
  79. Holst J, Feiring B, Naess LM, Norheim G, Kristiansen P et al (2005) The concept of “tailor-made”, protein-based, outer membrane vesicle vaccines against meningococcal disease. Vaccine 23:2202–2205PubMedGoogle Scholar
  80. Holst J, Martin D, Arnold R, Huergo CC, Oster P, O’Hallahan J, Rosenqvist E (2009) Properties and clinical performance of vaccines containing outer membrane vesicles from Neisseria meningitidis. Vaccine 27(Suppl 2):B3–12PubMedGoogle Scholar
  81. Hou VC, Koeberling O, Welsch JA, Granoff DM (2005) Protective antibody responses elicited by a meningococcal outer membrane vesicle vaccine with overexpressed genome-derived Neisserial antigen 1870. J Infect Dis 192:580–590PubMedGoogle Scholar
  82. Ismail S, Hampton MB, Keenan JI (2003) Helicobacter pylori outer membrane vesicles modulate proliferation and interleukin-8 production by gastric epithelial cells. Infect Immun 71:5670–5675PubMedGoogle Scholar
  83. Jennings HJ, Roy R, Gamian A (1986) Induction of meningococcal group B polysaccharide-specific IgG antibodies in mice by using an N-propionylated B polysaccharide-tetanus toxoid conjugate vaccine. J Immunol 137:1708–1713PubMedGoogle Scholar
  84. Jennings HJ, Gamian A, Ashton FE (1987) N-propionylated group B meningococcal polysaccharide mimics a unique epitope on group B Neisseria meningitidis. J Exp Med 165:1207–1211PubMedGoogle Scholar
  85. Jennings GT, Savino S, Marchetti E, Arico B, Kast T et al (2002) GNA33 from Neisseria meningitidis serogroup B encodes a membrane-bound lytic transglycosylase (MltA). Eur J Biochem 269:3722–3731PubMedGoogle Scholar
  86. Jin JS, Kwon SO, Moon DC, Gurung M, Lee JH, Kim SI, Lee JC (2011) Acinetobacter baumannii secretes cytotoxic outer membrane protein A via outer membrane vesicles. PLoS ONE 6:e17027PubMedGoogle Scholar
  87. John TJ, Jesudason MV, Lalitha MK, Ganesh A, Mohandas V et al (1996) Melioidosis in India: the tip of the iceberg? Indian J Med Res 103:62–65PubMedGoogle Scholar
  88. Jones DM, Eldridge J (1979) Development of antibodies to meningococcal protein and lipopolysaccharide serotype antigens in healthy-carriers. J Med Microbiol 12:107–111PubMedGoogle Scholar
  89. Jones BD, Falkow S (1996) Salmonellosis: host immune responses and bacterial virulence determinants. Annu Rev Immunol 14:533–561PubMedGoogle Scholar
  90. Kaminski RW, Oaks EV (2009) Inactivated and subunit vaccines to prevent shigellosis. Expert Rev Vaccines 8:1693–1704PubMedGoogle Scholar
  91. Kaparakis M, Turnbull L, Carneiro L, Firth S, Coleman HA et al (2010) Bacterial membrane vesicles deliver peptidoglycan to NOD1 in epithelial cells. Cell Microbiol 12:372–385PubMedGoogle Scholar
  92. Kaper JB, Morris JG Jr, Levine MM (1995) Cholera. Clin Microbiol Rev 8:48–86PubMedGoogle Scholar
  93. Katial RK, Brandt BL, Moran EE, Marks S, Agnello V, Zollinger WD (2002) Immunogenicity and safety testing of a group B intranasal meningococcal native outer membrane vesicle vaccine. Infect Immun 70:702–707PubMedGoogle Scholar
  94. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat Immunol 11:373–384PubMedGoogle Scholar
  95. Keenan JI, Allardyce RA, Bagshaw PF (1998) Lack of protection following immunisation with H. pylori outer membrane vesicles highlights antigenic differences between H. felis and H. pylori. FEMS Microbiol Lett 161:21–27PubMedGoogle Scholar
  96. Keenan JI, Rijpkema SG, Durrani Z, Roake JA (2003) Differences in immunogenicity and protection in mice and guinea pigs following intranasal immunization with Helicobacter pylori outer membrane antigens. FEMS Immunol Med Microbiol 36:199–205PubMedGoogle Scholar
  97. Kelly DF, Rappuoli R (2005) Reverse vaccinology and vaccines for serogroup B Neisseria meningitidis. Adv Exp Med Biol 568:217–223PubMedGoogle Scholar
  98. Kesavalu L, Ebersole JL, Machen RL, Holt SC (1992) Porphyromonas gingivalis virulence in mice: induction of immunity to bacterial components. Infect Immun 60:1455–1464PubMedGoogle Scholar
  99. Kim JY, Doody AM, Chen DJ, Cremona GH, Shuler ML, Putnam D, DeLisa MP (2008) Engineered bacterial outer membrane vesicles with enhanced functionality. J Mol Biol 380:51–66PubMedGoogle Scholar
  100. Koeberling O, Seubert A, Granoff DM (2008) Bactericidal antibody responses elicited by a meningococcal outer membrane vesicle vaccine with overexpressed factor H-binding protein and genetically attenuated endotoxin. J Infect Dis 198:262–270PubMedGoogle Scholar
  101. Koeberling O, Giuntini S, Seubert A, Granoff DM (2009) Meningococcal outer membrane vesicle vaccines derived from mutant strains engineered to express factor H binding proteins from antigenic variant groups 1 and 2. Clin Vaccine Immunol 16:156–162PubMedGoogle Scholar
  102. Koser ML, McGettigan JP, Tan GS, Smith ME, Koprowski H, Dietzschold B, Schnell MJ (2004) Rabies virus nucleoprotein as a carrier for foreign antigens. Proc Natl Acad Sci U S A 101:9405–9410PubMedGoogle Scholar
  103. Kotloff KL, Winickoff JP, Ivanoff B, Clemens JD, Swerdlow DL et al (1999) Global burden of shigella infections: implications for vaccine development and implementation of control strategies. Bull World Health Organ 77:651–666PubMedGoogle Scholar
  104. Kouokam JC, Wai SN (2006) Outer membrane vesicle-mediated export of a poreforming cytotoxin from Escherichia coli. Toxin Rev 25:31–46Google Scholar
  105. Kuehn MJ, Kesty NC (2005) Bacterial outer membrane vesicles and the host-pathogen interaction. Genes Dev 19:2645–2655PubMedGoogle Scholar
  106. Kulshin VA, Zahringer U, Lindner B, Frasch CE, Tsai CM, Dmitriev BA, Rietschel ET (1992) Structural characterization of the lipid A component of pathogenic Neisseria meningitidis. J Bacteriol 174:1793–1800PubMedGoogle Scholar
  107. Kurosaki T, Shinohara H, Baba Y (2010) B cell signaling and fate decision. Annu Rev Immunol 28:21–55PubMedGoogle Scholar
  108. Kweon MN (2008) Shigellosis: the current status of vaccine development. Curr Opin Infect Dis 21:313–318PubMedGoogle Scholar
  109. Kwon SO, Gho YS, Lee JC, Kim SI (2009) Proteome analysis of outer membrane vesicles from a clinical Acinetobacter baumannii isolate. FEMS Microbiol Lett 297:150–156PubMedGoogle Scholar
  110. Lamont RJ, Jenkinson HF (1998) Life below the gum line: pathogenic mechanisms of Porphyromonas gingivalis. Microbiol Mol Biol Rev 62:1244–1263PubMedGoogle Scholar
  111. Lee SR, Kim SH, Jeong KJ, Kim KS, Kim YH et al (2009) Multi-immunogenic outer membrane vesicles derived from an MsbB-deficient Salmonella enterica serovar typhimurium mutant. J Microbiol Biotechnol 19:1271–1279PubMedGoogle Scholar
  112. Levine MM, Kotloff KL, Barry EM, Pasetti MF, Sztein MB (2007) Clinical trials of Shigella vaccines: two steps forward and one step back on a long, hard road. Nat Rev Microbiol 5:540–553PubMedGoogle Scholar
  113. Locht C (2008) A common vaccination strategy to solve unsolved problems of tuberculosis and pertussis? Microbes Infect 10:1051–1056PubMedGoogle Scholar
  114. Low KB, Ittensohn M, Le T, Platt J, Sodi S et al (1999) Lipid A mutant salmonella with suppressed virulence and TNFalpha induction retain tumor-targeting in vivo. Nat Biotechnol 17:37–41PubMedGoogle Scholar
  115. Lowell GH, Ballou WR, Smith LF, Wirtz RA, Zollinger WD, Hockmeyer WT (1988) Proteosome-lipopeptide vaccines: enhancement of immunogenicity for malaria CS peptides. Science 240:800–802PubMedGoogle Scholar
  116. Lowrie DB, Aber VR, Carrol ME (1979) Division and death rates of salmonella typhimurium inside macrophages: use of penicillin as a probe. J Gen Microbiol 110:409–419PubMedGoogle Scholar
  117. Magalhaes JG, Philpott DJ, Nahori MA, Jehanno M, Fritz J et al (2005) Murine nod1 but not its human orthologue mediates innate immune detection of tracheal cytotoxin. EMBO Rep 6:1201–1207PubMedGoogle Scholar
  118. Mallett CP, Hale TL, Kaminski RW, Larsen T, Orr N, Cohen D, Lowell GH (1995) Intransal or intragastric immunization with proteosome-shigella lipopolysaccharide vaccines protects against lethal pneumonia in a murine model of shigella infection. Infect Immun 63:2382–2386PubMedGoogle Scholar
  119. Martin D, McDowell R (2004) The epidemiology of meningococcal disease in New Zealand in 2003. Ministry of health by the institute of environmental science and research (ESR) Limited, WellingtonGoogle Scholar
  120. Martin DR, Walker SJ, Baker MG, Lennon DR (1998) New Zealand epidemic of meningococcal disease identified by a strain with phenotype B:4:P1.4. J Infect Dis 177:497–500PubMedGoogle Scholar
  121. Masignani V, Balducci E, Di Marcello F, Savino S, Serruto D et al (2003a) NarE: a novel ADP-ribosyltransferase from Neisseria meningitidis. Mol Microbiol 50:1055–1067PubMedGoogle Scholar
  122. Masignani V, Comanducci M, Giuliani MM, Bambini S, Adu-Bobie J et al (2003b) Vaccination against Neisseria meningitidis using three variants of the lipoprotein GNA1870. J Exp Med 197:789–799PubMedGoogle Scholar
  123. Mastroeni P, Villarreal-Ramos B, Hormaeche CE (1993) Adoptive transfer of immunity to oral challenge with virulent salmonellae in innately susceptible BALB/c mice requires both immune serum and T cells. Infect Immun 61:3981–3984PubMedGoogle Scholar
  124. McConnell MJ, Pachon J (2010) Active and passive immunization against Acinetobacter baumannii using an inactivated whole cell vaccine. Vaccine 29:1–5PubMedGoogle Scholar
  125. McConnell MJ, Rumbo C, Bou G, Pachon J (2011) Outer membrane vesicles as an acellular vaccine against Acinetobacter baumannii. Vaccine 29:5705–5710PubMedGoogle Scholar
  126. McSorley SJ, Cookson BT, Jenkins MK (2000) Characterization of CD4 + T cell responses during natural infection with Salmonella typhimurium. J Immunol 164:986–993PubMedGoogle Scholar
  127. Mitka M (2005) New vaccine should ease meningitis fears. JAMA 293:1433–1434PubMedGoogle Scholar
  128. Moe GR, Zuno-Mitchell P, Hammond SN, Granoff DM (2002) Sequential immunization with vesicles prepared from heterologous Neisseria meningitidis strains elicits broadly protective serum antibodies to group B strains. Infect Immun 70:6021–6031PubMedGoogle Scholar
  129. Morein B, Sundquist B, Hoglund S, Dalsgaard K, Osterhaus A (1984) Iscom, a novel structure for antigenic presentation of membrane proteins from enveloped viruses. Nature 308:457–460PubMedGoogle Scholar
  130. Moreno C, Lifely MR, Esdaile J (1985) Immunity and protection of mice against Neisseria meningitidis group B by vaccination, using polysaccharide complexed with outer membrane proteins: a comparison with purified B polysaccharide. Infect Immun 47:527–533PubMedGoogle Scholar
  131. Nakao R, Hasegawa H, Ochiai K, Takashiba S, Ainai A et al (2011) Outer membrane vesicles of Porphyromonas gingivalis elicit a mucosal immune response. PLoS ONE 6:e26163PubMedGoogle Scholar
  132. Nieves W, Asakrah S, Qazi O, Brown KA, Kurtz J et al (2011) A naturally derived outer-membrane vesicle vaccine protects against lethal pulmonary Burkholderia pseudomallei infection. Vaccine 29:8381–8389PubMedGoogle Scholar
  133. Nolan T, Lambert S, Roberton D, Marshall H, Richmond P et al (2007) A novel combined hemophilus influenzae type b-Neisseria meningitidis serogroups C and Y-tetanus-toxoid conjugate vaccine is immunogenic and induces immune memory when co-administered with DTPa-HBV-IPV and conjugate pneumococcal vaccines in infants. Vaccine 25:8487–8499PubMedGoogle Scholar
  134. Nordstrom T, Forsgren A, Riesbeck K (2002) The immunoglobulin D-binding part of the outer membrane protein MID from Moraxella catarrhalis comprises 238 amino acids and a tetrameric structure. J Biol Chem 277:34692–34699PubMedGoogle Scholar
  135. Noronha CP, Struchiner CJ, Halloran ME (1995) Assessment of the direct effectiveness of BC meningococcal vaccine in Rio de Janeiro, Brazil: a case-control study. Int J Epidemiol 24:1050–1057PubMedGoogle Scholar
  136. Ntezayabo B, De Serres G, Duval B (2003) Pertussis resurgence in Canada largely caused by a cohort effect. Pediatr Infect Dis J 22:22–27PubMedGoogle Scholar
  137. O’Hagan DT, Valiante NM (2003) Recent advances in the discovery and delivery of vaccine adjuvants. Nat Rev Drug Discov 2:727–735PubMedGoogle Scholar
  138. Oliver KJ, Reddin KM, Bracegirdle P, Hudson MJ, Borrow R et al (2002) Neisseria lactamica protects against experimental meningococcal infection. Infect Immun 70:3621–3626PubMedGoogle Scholar
  139. Oster P, Lennon D, O’Hallahan J, Mulholland K, Reid S, Martin D (2005) MeNZB: a safe and highly immunogenic tailor-made vaccine against the New Zealand Neisseria meningitidis serogroup B disease epidemic strain. Vaccine 23:2191–2196PubMedGoogle Scholar
  140. Oster P, O’Hallahan J, Aaberge I, Tilman S, Ypma E, Martin D (2007) Immunogenicity and safety of a strain-specific MenB OMV vaccine delivered to under 5-year olds in New Zealand. Vaccine 25:3075–3079PubMedGoogle Scholar
  141. Park SB, Jang HB, Nho SW, Cha IS, Hikima J et al (2011) Outer membrane vesicles as a candidate vaccine against edwardsiellosis. PLoS ONE 6:e17629PubMedGoogle Scholar
  142. Parkhill J, Achtman M, James KD, Bentley SD, Churcher C et al (2000) Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491. Nature 404:502–506PubMedGoogle Scholar
  143. Patial S, Chaturvedi VK, Rai A, Saini M, Chandra R, Saini Y, Gupta PK (2007) Virus neutralizing antibody response in mice and dogs with a bicistronic DNA vaccine encoding rabies virus glycoprotein and canine parvovirus VP2. Vaccine 25:4020–4028PubMedGoogle Scholar
  144. Perkins BA, Jonsdottir K, Briem H, Griffiths E, Plikaytis BD et al (1998) Immunogenicity of two efficacious outer membrane protein-based serogroup B meningococcal vaccines among young adults in Iceland. J Infect Dis 177:683–691PubMedGoogle Scholar
  145. Perrett KP, Pollard AJ (2005) Towards an improved serogroup B Neisseria meningitidis vaccine. Expert Opin Biol Ther 5:1611–1625PubMedGoogle Scholar
  146. Pierson T, Matrakas D, Taylor YU, Manyam G, Morozov VN, Zhou W, van Hoek ML (2011) Proteomic characterization and functional analysis of outer membrane vesicles of Francisella novicida suggests possible role in virulence and use as a vaccine. J Proteome Res 10:954–967PubMedGoogle Scholar
  147. Pizza M, Scarlato V, Masignani V, Giuliani MM, Arico B et al (2000) Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 287:1816–1820PubMedGoogle Scholar
  148. Pizza M, Giuliani MM, Fontana MR, Monaci E, Douce G et al (2001) Mucosal vaccines: non toxic derivatives of LT and CT as mucosal adjuvants. Vaccine 19:2534–2541PubMedGoogle Scholar
  149. Plested JS, Harris SL, Wright JC, Coull PA, Makepeace K et al (2003) Highly conserved Neisseria meningitidis inner-core lipopolysaccharide epitope confers protection against experimental meningococcal bacteremia. J Infect Dis 187:1223–1234PubMedGoogle Scholar
  150. Roberts R, Moreno G, Bottero D, Gaillard ME, Fingermann M et al (2008) Outer membrane vesicles as acellular vaccine against pertussis. Vaccine 26:4639–4646PubMedGoogle Scholar
  151. Rodriguez AP, Dickinson F, Baly A, Martinez R (1999) The epidemiological impact of antimeningococcal B vaccination in Cuba. Mem Inst Oswaldo Cruz 94:433–440PubMedGoogle Scholar
  152. Rosenstein NE, Perkins BA, Stephens DS, Popovic T, Hughes JM (2001) Meningococcal disease. N Engl J Med 344:1378–1388PubMedGoogle Scholar
  153. Roy N, Barman S, Ghosh A, Pal A, Chakraborty K et al (2010) Immunogenicity and protective efficacy of Vibrio cholerae outer membrane vesicles in rabbit model. FEMS Immunol Med Microbiol 60:18–27PubMedGoogle Scholar
  154. Roy K, Hamilton DJ, Munson GP, Fleckenstein JM (2011) Outer membrane vesicles induce immune responses to virulence proteins and protect against colonization by enterotoxigenic Escherichia coli. Clin Vaccine Immunol 18:1803–1808PubMedGoogle Scholar
  155. Sack DA, Sack RB, Nair GB, Siddique AK (2004) Cholera Lancet 363:223–233Google Scholar
  156. Sadarangani M, Pollard AJ (2010) Serogroup B meningococcal vaccines-an unfinished story. Lancet Infect Dis 10:112–124PubMedGoogle Scholar
  157. Samuelsson M, Jendholm J, Amisten S, Morrison SL, Forsgren A, Riesbeck K (2006) The IgD CH1 region contains the binding site for the human respiratory pathogen Moraxella catarrhalis IgD-binding protein MID. Eur J Immunol 36:2525–2534PubMedGoogle Scholar
  158. Santos GF, Deck RR, Donnelly J, Blackwelder W, Granoff DM (2001) Importance of complement source in measuring meningococcal bactericidal titers. Clin Diagn Lab Immunol 8:616–623PubMedGoogle Scholar
  159. Sardinas G, Reddin K, Pajon R, Gorringe A (2006) Outer membrane vesicles of Neisseria lactamica as a potential mucosal adjuvant. Vaccine 24:206–214PubMedGoogle Scholar
  160. Sarkar-Tyson M, Titball RW (2010) Progress toward development of vaccines against melioidosis: a review. Clin Ther 32:1437–1445PubMedGoogle Scholar
  161. Saunders NB, Shoemaker DR, Brandt BL, Moran EE, Larsen T, Zollinger WD (1999) Immunogenicity of intranasally administered meningococcal native outer membrane vesicles in mice. Infect Immun 67:113–119PubMedGoogle Scholar
  162. Schild S, Nelson EJ, Camilli A (2008) Immunization with vibrio cholerae outer membrane vesicles induces protective immunity in mice. Infect Immun 76:4554–4563PubMedGoogle Scholar
  163. Schild S, Nelson EJ, Bishop AL, Camilli A (2009) Characterization of vibrio cholerae outer membrane vesicles as a candidate vaccine for cholera. Infect Immun 77:472–484PubMedGoogle Scholar
  164. Serruto D, Adu-Bobie J, Scarselli M, Veggi D, Pizza M, Rappuoli R, Arico B (2003) Neisseria meningitidis app, a new adhesin with autocatalytic serine protease activity. Mol Microbiol 48:323–334PubMedGoogle Scholar
  165. Serruto D, Spadafina T, Ciucchi L, Lewis LA, Ram S et al (2010) Neisseria meningitidis GNA2132, a heparin-binding protein that induces protective immunity in humans. Proc Natl Acad Sci U S A 107:3770–3775PubMedGoogle Scholar
  166. Sethi S, Sethi R, Eschberger K, Lobbins P, Cai X, Grant BJ, Murphy TF (2007) Airway bacterial concentrations and exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 176:356–361PubMedGoogle Scholar
  167. Shang ES, Champion CI, Wu XY, Skare JT, Blanco DR, Miller JN, Lovett MA (2000) Comparison of protection in rabbits against host-adapted and cultivated Borrelia burgdorferi following infection-derived immunity or immunization with outer membrane vesicles or outer surface protein A. Infect Immun 68:4189–4199PubMedGoogle Scholar
  168. Sharifat Salmani A, Siadat SD, Norouzian D, Izadi Mobarakeh J, Kheirandish M, Zangeneh M (2009) Outer membrane vesicle of Neisseria meningitidis serogroup B as an adjuvant to induce specific antibody response against the lipopolysaccharide of Brucella abortus S99. Ann Microbiol 1:145–149Google Scholar
  169. Sharip A, Sorvillo F, Redelings MD, Mascola L, Wise M, Nguyen DM (2006) Population-based analysis of meningococcal disease mortality in the United States: 1990–2002. Pediatr Infect Dis J 25:191–194PubMedGoogle Scholar
  170. Shepard CW, Rosenstein NE, Fischer M (2003) Neonatal meningococcal disease in the United States, 1990–1999. Pediatr Infect Dis J 22:418–422PubMedGoogle Scholar
  171. Siadat SD, Kheirandish M, Norouzian D, Behzadiyannejad Q, Najar Peerayeh S, Zangeneh M, Nejati M (2007) A flow cytometric opsonophagocytic assay for measurement of functional antibodies elicited after immunization with outer membrane vesicle of Neisseria meningitidis serogroup B. Pak J Biol Sci 10:3578–3584PubMedGoogle Scholar
  172. Siadat SD, Naddaf SR, Zangeneh M, Moshiri A, Sadat SM et al (2011) Outer membrane vesicle of Neisseria meningitidis serogroup B as an adjuvant in immunization of rabbit against Neisseria meningitidis serogroup A. Afr J Microbiol Res 5:3090–3095Google Scholar
  173. Sierra GV, Campa HC, Varcacel NM, Garcia IL, Izquierdo PL et al (1991) Vaccine against group B Neisseria meningitidis: protection trial and mass vaccination results in Cuba. NIPH Ann 14:195–207, discussion 208–110Google Scholar
  174. Singh M, Chakrapani A, O’Hagan D (2007) Nanoparticles and microparticles as vaccine-delivery systems. Expert Rev Vaccines 6:797–808PubMedGoogle Scholar
  175. Singh B, Su YC, Riesbeck K (2010) Vitronectin in bacterial pathogenesis: a host protein used in complement escape and cellular invasion. Mol Microbiol 78:545–560PubMedGoogle Scholar
  176. Singh K, Bayrak B, Riesbeck K (2012) A role for TLRs in Moraxella-superantigen induced polyclonal B cell activation. Front Biosci (Schol Ed) 4:1031–1043Google Scholar
  177. Steeghs L, Keestra AM, van Mourik A, Uronen-Hansson H, van der Ley P et al (2008) Differential activation of human and mouse toll-like receptor 4 by the adjuvant candidate LpxL1 of Neisseria meningitidis. Infect Immun 76:3801–3807PubMedGoogle Scholar
  178. Stephens DS, Greenwood B, Brandtzaeg P (2007) Epidemic meningitis, meningococcaemia, and Neisseria meningitidis. Lancet 369:2196–2210PubMedGoogle Scholar
  179. Su EL, Snape MD (2011) A combination recombinant protein and outer membrane vesicle vaccine against serogroup B meningococcal disease. Expert Rev Vaccines 10:575–588PubMedGoogle Scholar
  180. Sztein MB, Wasserman SS, Tacket CO, Edelman R, Hone D, Lindberg AA, Levine MM (1994) Cytokine production patterns and lymphoproliferative responses in volunteers orally immunized with attenuated vaccine strains of Salmonella typhi. J Infect Dis 170:1508–1517PubMedGoogle Scholar
  181. Tan TT, Nordstrom T, Forsgren A, Riesbeck K (2005) The respiratory pathogen Moraxella catarrhalis adheres to epithelial cells by interacting with fibronectin through ubiquitous surface proteins A1 and A2. J Infect Dis 192:1029–1038PubMedGoogle Scholar
  182. Tan TT, Morgelin M, Forsgren A, Riesbeck K (2007) Hemophilus influenzae survival during complement-mediated attacks is promoted by Moraxella catarrhalis outer membrane vesicles. J Infect Dis 195:1661–1670PubMedGoogle Scholar
  183. Tanaka M, Vitek CR, Pascual FB, Bisgard KM, Tate JE, Murphy TV (2003) Trends in pertussis among infants in the United States, 1980–1999. JAMA 290:2968–2975PubMedGoogle Scholar
  184. Tappero JW, Lagos R, Ballesteros AM, Plikaytis B, Williams D et al (1999) Immunogenicity of 2 serogroup B outer-membrane protein meningococcal vaccines: a randomized controlled trial in Chile. JAMA 281:1520–1527PubMedGoogle Scholar
  185. Tettelin H, Saunders NJ, Heidelberg J, Jeffries AC, Nelson KE et al (2000) Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science 287:1809–1815PubMedGoogle Scholar
  186. Tondella ML, Popovic T, Rosenstein NE, Lake DB, Carlone GM, Mayer LW, Perkins BA (2000) Distribution of Neisseria meningitidis serogroup B serosubtypes and serotypes circulating in the United States. The active bacterial core surveillance team. J Clin Microbiol 38:3323–3328PubMedGoogle Scholar
  187. Trotter CL, Ramsay ME (2007) Vaccination against meningococcal disease in Europe: review and recommendations for the use of conjugate vaccines. FEMS Microbiol Rev 31:101–107PubMedGoogle Scholar
  188. Trotter C, Findlow J, Balmer P, Holland A, Barchha R et al (2007) Seroprevalence of bactericidal and anti-outer membrane vesicle antibodies to Neisseria meningitidis group B in England. Clin Vaccine Immunol 14:863–868PubMedGoogle Scholar
  189. Urwin R, Russell JE, Thompson EA, Holmes EC, Feavers IM, Maiden MC (2004) Distribution of surface protein variants among hyperinvasive meningococci: implications for vaccine design. Infect Immun 72:5955–5962PubMedGoogle Scholar
  190. van Deuren M, Brandtzaeg P, van der Meer JW (2000) Update on meningococcal disease with emphasis on pathogenesis and clinical management. Clin Microbiol Rev 13:144–166, table of contentsGoogle Scholar
  191. Vaughan AT, Brackenbury LS, Massari P, Davenport V, Gorringe A, Heyderman RS, Williams NA (2010) Neisseria lactamica selectively induces mitogenic proliferation of the naive B cell pool via cell surface Ig. J Immunol 185:3652–3660PubMedGoogle Scholar
  192. Viala J, Chaput C, Boneca IG, Cardona A, Girardin SE et al (2004) Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat Immunol 5:1166–1174PubMedGoogle Scholar
  193. Vidakovics ML, Jendholm J, Morgelin M, Mansson A, Larsson C, Cardell LO, Riesbeck K (2010) B cell activation by outer membrane vesicles–a novel virulence mechanism. PLoS Pathog 6:e1000724PubMedGoogle Scholar
  194. Vogel H, Jahnig F (1986) Models for the structure of outer-membrane proteins of Escherichia coli derived from raman spectroscopy and prediction methods. J Mol Biol 190:191–199PubMedGoogle Scholar
  195. Wai SN, Lindmark B, Soderblom T, Takade A, Westermark M et al (2003) Vesicle-mediated export and assembly of pore-forming oligomers of the enterobacterial ClyA cytotoxin. Cell 115:25–35PubMedGoogle Scholar
  196. Walker EM, Zampighi GA, Blanco DR, Miller JN, Lovett MA (1989) Demonstration of rare protein in the outer membrane of Treponema pallidum subsp. pallidum by freeze-fracture analysis. J Bacteriol 171:5005–5011PubMedGoogle Scholar
  197. Wang L, Huang JA, Nagesha HS, Smith SC, Phelps A et al (1999) Bacterial expression of the major antigenic regions of porcine rotavirus VP7 induces a neutralizing immune response in mice. Vaccine 17:2636–2645PubMedGoogle Scholar
  198. Wedege E, Nokleby H, Bjune G (1999) No evidence for serosubtype-restricted protection among teenagers vaccinated with the Norwegian group B outer membrane vesicle vaccine. J Infect Dis 180:242, author reply 242–243Google Scholar
  199. Weynants V, Denoel P, Devos N, Janssens D, Feron C et al (2009) Genetically modified L3,7 and L2 lipooligosaccharides from Neisseria meningitidis serogroup B confer a broad cross-bactericidal response. Infect Immun 77:2084–2093PubMedGoogle Scholar
  200. White NJ (2003) Melioidosis Lancet 361:1715–1722Google Scholar
  201. WHO (1998) Control of epidemic meninogococcal disease: WHO practical guidelines. World Health organization, GenevaGoogle Scholar
  202. Wu Y, Przysiecki C, Flanagan E, Bello-Irizarry SN, Ionescu R et al (2006) Sustained high-titer antibody responses induced by conjugating a malarial vaccine candidate to outer-membrane protein complex. Proc Natl Acad Sci U S A 103:18243–18248PubMedGoogle Scholar
  203. Wyle FA, Artenstein MS, Brandt BL, Tramont EC, Kasper DL et al (1972) Immunologic response of man to group B meningococcal polysaccharide vaccines. J Infect Dis 126:514–521PubMedGoogle Scholar
  204. Zimmer SM, Stephens DS (2006) Serogroup B meningococcal vaccines. Curr Opin Investig Drugs 7:733–739PubMedGoogle Scholar
  205. Zipfel PF, Skerka C (2009) Complement regulators and inhibitory proteins. Nat Rev Immunol 9:729–740PubMedGoogle Scholar
  206. Zollinger WD, Mandrell RE (1983) Importance of complement source in bactericidal activity of human antibody and murine monoclonal antibody to meningococcal group B polysaccharide. Infect Immun 40:257–264PubMedGoogle Scholar
  207. Zollinger WD, Kasper DL, Veltri BJ, Artenstein MS (1972) Isolation and characterization of a native cell wall complex from Neisseria meningitidis. Infect Immun 6:835–851PubMedGoogle Scholar
  208. Zollinger WD, Mandrell RE, Altieri P, Berman S, Lowenthal J, Artenstein MS (1978) Safety and immunogenicity of a Neisseria meningitidis type 2 protein vaccine in animals and humans. J Infect Dis 137:728–739PubMedGoogle Scholar
  209. Zollinger WD, Donets M, Brandt BL et al (2008) Multivalent group B meningococcal vaccine based on native outer membrane vesicles has potential for providing safe, broadly protective immunity. Abstract 035.Google Scholar
  210. Zollinger WD, Donets MA, Schmiel DH, Pinto VB, Labrie JE 3rd et al (2010) Design and evaluation in mice of a broadly protective meningococcal group B native outer membrane vesicle vaccine. Vaccine 28:5057–5067PubMedGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.BiophysicsFormerly of Saha Institute of Nuclear PhysicsKolkataIndia

Personalised recommendations