Advertisement

Vertical Profiles Over Flat Terrain

  • Stefan Emeis
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

This chapter is going to introduce the basic laws for the shape of the vertical profiles of wind speed and turbulence in a flat, horizontally homogeneous atmospheric boundary layer (ABL) over land. The logarithmic wind profile and the power law profile are introduced and compared. The impact of thermal stratification of the air on the profiles is discussed. Extension of profile laws into the Ekman layer are presented. Internal boundary layers and low-level jets are addressed. Finally, specific features of wind and turbulence profiles over cities and forests are presented, too.

Keywords

Wind Turbine Friction Velocity Urban Heat Island Roughness Length Wind Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Allnoch, N.: Windkraftnutzung im nordwestdeutschen Binnenland: Ein System zur Standortbewertung für Windkraftanlagen. Geographische Kommission für Westfalen, Münster, ARDEY-Verlag, 160 pp. (1992)Google Scholar
  2. Arnfield A.J.: Two Decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol. 23, 1–26 (2003)Google Scholar
  3. Arya, S.P.: Atmospheric boundary layer and its parameterization. In: Cermak, J.E. et al. (Eds.) Wind Climate in Cities. Kluwer, Dordrecht. 41–66 pp. (1995)Google Scholar
  4. Atkinson B.W.: Numerical modelling of urban heat-island intensity. Bound.-Lay. Meteorol. 109, 285–310 (2003)Google Scholar
  5. Batchvarova E., Gryning S.-E.: Progress in urban dispersion studies. Theor. Appl. Climatol. 84, 57–67 (2006)Google Scholar
  6. Blackadar, A.K.: The Vertical Distribution of Wind and Turbulent Exchange in a Neutral Atmosphere. J. Geophys. Res. 67, 3095–3102 (1962)Google Scholar
  7. Businger, J.A., J.C. Wyngaard, Y. Izumi, E.F. Bradley: Flux profile relationships in the atmospheric surface layer. J. Atmos. Sci. 28, 181–189 (1971)Google Scholar
  8. CERC: Cambridge Environmental Research Consultants, ADMS dispersion model. (2001) http://www.cerc.co.uk.
  9. Cermak, J.E., A.G. Davenport, E.J. Plate, D.X. Viegas (Eds): Wind Climate in Cities. NATO ASI Series E277, Kluwer Acad Publ, Dordrecht, 772 pp. (1995)Google Scholar
  10. Chow, W.T.L., Roth, M.: Temporal dynamics of the urban heat island of Singapore. Int. J. Climatol. 26, 2243–2260 (2006)Google Scholar
  11. Counihan, J.: Simulation of an adiabatic urban boundary layerurban boundary layer in a wind tunnel. Atmos. Environ. 7, 673–689 (1973)Google Scholar
  12. Crutzen, P.J.: New Directions: The growing urban heat and pollution “island” effect – impact on chemistry and climate. Atmos. Environ. 38, 3539–3540 (2004)Google Scholar
  13. Davis, F.K., H. Newstein: The Variation of Gust Factors with Mean Wind Speed and with Height. J. Appl. Meteor. 7, 372–378 (1968)Google Scholar
  14. Dyer, A.J.: A review of flux-profile relations. Bound.-Lay. Meteorol. 1 , 363–372 (1974)Google Scholar
  15. Emeis, S., Jahn, C., Münkel, C., Münsterer, C., Schäfer, K.: Multiple atmospheric layering and mixing-layer height in the Inn valley observed by remote sensing. Meteorol. Z. 16, 415–424 (2007a)Google Scholar
  16. Emeis, S., K. Baumann-Stanzer, M. Piringer, M. Kallistratova, R. Kouznetsov, V. Yushkov: Wind and turbulence in the urban boundary layer – analysis from acoustic remote sensing data and fit to analytical relations. Meteorol. Z. 16, 393n406 (2007b)Google Scholar
  17. Emeis, S., S. Frandsen: Reduction of Horizontal Wind Speed in a Boundary Layer with Obstacles. Bound.-Lay. Meteorol. 64, 297–305 (1993)Google Scholar
  18. Emeis, S.: Vertical variation of frequency distributions of wind speed in and above the surface layer observed by sodar. Meteorol. Z. 10, 141–149 (2001)Google Scholar
  19. Emeis, S.: How well does a Power Law Fit to a Diabatic Boundary-Layer Wind Profile? DEWI-Magazine No. 26, 59–62. (2005)Google Scholar
  20. Emeis, S.: Vertical wind profiles over an urban area. Meteorol. Z. 13, 353–359 (2004)Google Scholar
  21. Etling, D.: Theoretische Meteorologie Eine Einführung. 2nd edition, Springer, Berlin, Heidelberg, New York. (2002)Google Scholar
  22. Farell, C., Iyengar, A.K.S.: Experiments on the wind tunnel simulation of atmospheric boundary layers. J. Wind Eng. Indust. Aerodyn. 79, 11–35 (1999)Google Scholar
  23. Floors, R., S.-E. Gryning, A. Peña, E. Batchvarova: Analysis of diabatic flow modification in the internal boundary layer. Meteorol. Z. 20, 649–659 (2011)Google Scholar
  24. Foken, T.: Application of Footprint Models for the Fine-Tuning of Wind Power Locations on Inland Areas. DEWI Mag. 40, 51–54 (2012)Google Scholar
  25. Garratt, J.R.: The atmospheric boundary layer. Cambridge University Press. 334 pp. (1992)Google Scholar
  26. Gerstengarbe, F.-W., P.C. Werner, U. Rüge (Eds.): Katalog der Großwetterlagen Europas (1881 - 1998). Nach Paul Hess und Helmuth Brezowsky. 5th edition. German Meteorological Service, Potsdam/Offenbach a. M. (1999) (available from: http://www.deutscher-wetterdienst.de/lexikon/download.php?file=Grosswetterlage.pdf or http://www.pik-potsdam.de/~uwerner/gwl/gwl.pdf)
  27. Grimmond, C.S.B.: Progress in measuring and observing the urban atmosphere. Theor. Appl. Climatol. 84, 3–22 (2006)Google Scholar
  28. Gryning, S.-E., Batchvarova, E., Brümmer, B., Jørgensen, H., Larsen, S.: On the extension of the wind profile over homogeneous terrain beyond the surface layer. Bound.-Lay. Meteorol. 124,251–268 (2007)Google Scholar
  29. Hellmann, G.: Über die Bewegung der Luft in den untersten Schichten der Atmosphäre. Meteorol. Z. 32, 1–16 (1915)Google Scholar
  30. Hess, G.D., J.R. Garratt: Evaluating models of the neutral, barotropic planetary boundary layer using integral measures. Part I: Overview. Bound.-Lay. Meteor. 104, 333–358 (2002)Google Scholar
  31. Hidalgo, J., Masson, V., Baklanov, A., Pigeon, G., Gimeno, L.: Advances in Urban Climate Modeling. Ann. N.Y. Acad. Sci. 1146, 354–374 (2008)Google Scholar
  32. Högström, U., Bergström, H., Smedman, A.-S., Halldin, S., Lindroth, A.: Turbulent exchange above a pine forest, I: Fluxes and gradients. Bound.-Lay. Meteorol. 49, 197–217 (1989)Google Scholar
  33. Högström, U.: Non-dimensional wind and temperature profiles in the atmospheric surface layer: a re-evaluation. Bound.-Lay. Meteorol., 42, 55–78 (1988)Google Scholar
  34. Holtslag, A.A.M., H.A.R. de Bruin: Applied modeling of the nighttime surface energy balance over land. J. Appl. Meteor., 27, 689–704 (1988)Google Scholar
  35. Jensen, N.O.: Change of Surface Roughness and the Planetary Boundary Layer. Quart. J. Roy. Meteorol. Soc. 104, 351–356 (1978)Google Scholar
  36. Justus, C.G., W.R. Hargraves, A. Mikhail, D. Graber: Methods for Estimating Wind Speed Frequency Distributions. J. Appl. Meteor. 17, 350–353 (1978)Google Scholar
  37. Kaimal, J.V., J.C. Wyngaard, Y. Izumi, O.R. Coté: Spectral characteristics of surface-layer turbulence. Quart. J. Roy. Meteorol. Soc. 98, 563n589 (1972)Google Scholar
  38. Kanda, M.: Progress in Urban Meteorology: A Review. J. Meteor. Soc. Jap. 85B, 363–383 (2007)Google Scholar
  39. Kraus, H.: Grundlagen der Grenzschicht-Meteorologie. Springer, 214 pp. (2008)Google Scholar
  40. Lokoshchenko, M.A., M.A., Yavlyaeva, E.A.: Wind Profiles in Moscow city by the Sodar Data.14th International Symposium for the Advancement of Boundary Layer Remote Sensing. IOP Conf. Series: Earth and Environmental Science 1, 012064. DOI: 10.1088/1755-1307/1/1/012064 (2008)
  41. Miao, S., F. Shen, M.A. LeMone, M. Tewari, Q. Li, Y. Wang: An Observational and Modeling Study of Characteristics of Urban Heat Island and Boundary Layer Strutures in Beijing. J. Appl. Meteor. Climatol. 48, 484–501 (2009)Google Scholar
  42. Miyake, M.: Transformation of the atmospheric boundary layer over inhomogeneous surfaces. Univ. of Washington, Seattle, unpubl. MSc-thesis, Sci. Rep. 5R-6. (1965)Google Scholar
  43. Panofsky, H.A., H. Tennekes, D.H. Lenschow, J.C. Wyngaard: The characteristics of turbulent velocity components in the surface layer under convective conditions. Bound.-Lay. Meteorol., 11, 355–361 (1977)Google Scholar
  44. Paulson, C.A.: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteorol. 9, 857–861 (1970)Google Scholar
  45. Peña, A., S.-E. Gryning, C. Hasager: Comparing mixing-length models of the diabatic wind profile over homogeneous terrainhomogeneous terrain. Theor. Appl. Climatol., 100, 325–335 (2010b)Google Scholar
  46. Peña, A., S.-E. Gryning, J. Mann, C.B. Hasager: Length Scales of the Neutral Wind Profile over Homogeneous Terrain. J. Appl. Meteor. Climatol., 49, 792–806 (2010a)Google Scholar
  47. Peppler, A.: Windmessungen auf dem Eilveser Funkenturm. Beitr. Phys. fr. Atmosph. 9, 114–129 (1921)Google Scholar
  48. Piringer, M., Joffre, S., Baklanov, A., Christen, A., Deserti, M., de Ridder, K., Emeis, S., Mestayer, P., Tombrou, M., Middleton, D., Baumann-Stanzer, K., Dandou, A., Karppinen, A., Burzynski, J.: The surface energy balance and the mixing height in urban areas – activities and recommendations of COSTAction 715. Bound.-Lay. Meteorol. 124, 3–24 (2007)Google Scholar
  49. Plate, E.J.: Urban Climates and Urban ClimateModelling: An Introduction. – In: Cermak, J.E. et al. (Eds.) Wind Climate in Cities. NATO ASI Series E277, Kluwer Acad Publ, Dordrecht, 23–39. (1995)Google Scholar
  50. Raupach, M.R.: Anomalies in flux-gradient relationships over forest. Bound.-Lay. Meteorol. 16, 467–486 (1979)Google Scholar
  51. Rotach, M.W.: On the influence of the urban roughness sublayer on Turbulence and dispersion. Atmos. Environ. 33, 4001–4008 (1999)Google Scholar
  52. Roth, M.: Review of atmospheric turbulence over cities. Quart. J. Roy. Meteor. Soc. 126, 941–990 (2000)Google Scholar
  53. Sathe, A., S.-E. Gryning, A. Peña: Comparison of the atmospheric stability and wind profiles at two wind farm sites over a long marine fetch in the North Sea. Wind Energy 14, 767–780 (2011)Google Scholar
  54. Savelyev, S.A., P.A. Taylor: Internal Boundary Layers: I. Height Formulae for Neutral and Diabatic Flows. Bound.-Lay. Meteorol. 115, 1–25 (2005)Google Scholar
  55. Schatzmann, M., Leitl, B.: Validation and application of obstacle-resolving urban dispersion models. Atmos. Environ. 36, 4811–4821 (2002)Google Scholar
  56. Schmid, H.P.: Footprint modeling for vegetation atmosphere exchange studies: a review and perspective. Agric. Forest Meteorol. 113, 159–183 (2002).Google Scholar
  57. Schmid, H.P.: Source areas for scalars and scalar fluxes. Bound.-Lay. Meteorol. 67, 293–318 (1994)Google Scholar
  58. Schroers, H., H. Lösslein, K. Zilich: Untersuchung der Windstruktur bei Starkwind und Sturm. Meteorol. Rdsch. 42, 202–212 (1990)Google Scholar
  59. Sedefian, L.: On the vertical extrapolation of mean wind power density. J. Appl. Meteor. 19, 488–493 (1980)Google Scholar
  60. Shreffler, J.H.: Detection of Centripetal Heat Island Circulations from Tower Data in St. Louis. Bound.-Lay. Meteorol. 15, 229–242 (1978)Google Scholar
  61. Shreffler, J.H.: Heat Island Convergence in St. Louis during Calm Periods. J. Appl. Meteorol. 18, 1512–1520 (1979)Google Scholar
  62. Teunissen, H.W.: Structure of mean winds and turbulence in the planetary boundary layer over rural terrain. Bound.-Lay. Meteorol. 19, 187–221 (1980)Google Scholar
  63. Troen, I., E.L. Petersen: European Wind Atlas. Risø National Laboratory, Roskilde, Denmark. 656 pp. (1989)Google Scholar
  64. Velasco, E., Márquez, C., Bueno, E., Bernabé, R.M., Sánchez, A., Fentanes, O., Wöhrnschimmel, H., Cárdenas, B., Kamilla, A.,Wakamatsu, S., Molina, L.T.: Vertical distribution of ozone and VOCs in the low boundary layer of Mexico City. Atmos. Chem. Phys. Discuss. 7, 12751–12779 (2007)Google Scholar
  65. Wieringa, J.: Gust factors over open water and built-up country. Bound.-Lay. Meteorol. 3, 424–441 (1973)Google Scholar
  66. Wieringa, J.: Shapes of annual frequency distributions of wind speed observed on high meteorological masts. Bound.-Lay.Meteorol. 47, 85–110 (1989)Google Scholar
  67. Zilitinkevich, G.: Resistance Laws and Prediction Equations for the Depth of the Planetary Boundary Layer. J. Atmos. Sci. 32, 741–752 (1975)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institut für Meteorologie und KlimaforschungKarlsruher Institut für TechnologieGarmisch-PartenkirchenGermany

Personalised recommendations