Advertisement

Thermodynamic Properties of Model DNA

  • Thomas  E. Ouldridge
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The attractive stacking interaction between adjacent bases causes single strands to form helical stacks at low temperature, with this order being disrupted as the temperature increases. The literature is divided on both the nature of the attraction and the thermodynamics of the transition. The relative contributions of van der Waals, induced dipole, hydrophobic and permanent polar/electrostatic interactions remain unclear.

Keywords

Partition Function Statistical Weight Duplex Formation Umbrella Sampling Free Energy Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    W. Saenger. Principles of Nucleic Acid Structure. Springer-Verlag, New York, 1984.Google Scholar
  2. 2.
    K. M. Guckan et al. Factors contributing to aromatic stacking in water: evaluation in the context of DNA. J. Am. Chem. Soc., 122(10):2213–2222, 2000.Google Scholar
  3. 3.
    G. Vesnaver and K. J. Breslauer. The contribution of DNA single-stranded order to the thermodynamics of duplex formation. Proc. Natl. Acad. Sci. U.S.A, 88:3569–3573, 1991.Google Scholar
  4. 4.
    M. Leng and G. Felsenfeld. A study of polyadenylic acid at neutral ph. J. Mol. Biol., 15(2):455–466, 1966.Google Scholar
  5. 5.
    R. M. Epand and H. A. Scheraga. Enthalpy of stacking in single-stranded polyriboadenylic acid. J. Am. Chem. Soc., 89(15):3888–3892, 1967.Google Scholar
  6. 6.
    D. Pörschke. The nature of stacking interactions in polynucleotides. molecular states in oligo- and polyribocytidylic acids by relaxation analysis. Biochemistry, 15(7):1495–1499, 1976.Google Scholar
  7. 7.
    S. M. Freier et al. Solvent effects on the kinetics and thermodynamics of stacking in poly(cyticylic acid). Biochemistry, 20:1419–1426, 1981.Google Scholar
  8. 8.
    C. S. M. Olsthoorn et al. Circular dichroism study of stacking properties of oligodeoxyadenylates and polydeoxyadenylate. Eur. J. Biochem., 115(2):309–321, 1981.Google Scholar
  9. 9.
    J. Zhou et al. Conformational changes in single-strand DNA as a function of temperature by SANS. Biophys. J., 90(2):544–551, 2006.Google Scholar
  10. 10.
    P. J. Mikulecky and A. L. Feig. Heat capacity changes associated with nucleic acid folding. Biopolymers, 82(1):38–58, 2006.Google Scholar
  11. 11.
    J. Applequist and V. Damle. Thermodynamics of the one-stranded helix-coil equilibrium in polyadenylic acid. J. Am. Chem. Soc., 88(17):3895–3900, 1966.Google Scholar
  12. 12.
    J. A. Holbrook et al. Enthalpy and heat capacity changes for formation of an oligomeric DNA duplex: Interpretation in terms of coupled processes of formation and association of single-stranded helices. Biochemistry, 38(26):8409–8422, 1999.Google Scholar
  13. 13.
    I. Jelesarov et al. The energetics of HMG box interactions with DNA: thermodynamic description of the target dna duplexes. J. Mol. Biol., 294(4):981–995, 1999.Google Scholar
  14. 14.
    J. Norberg and L. Nilsson. Potential of mean force calculations of the stacking-unstacking process in single-stranded deoxyribodinucleoside monophosphates. Biophys. J., 69(6):2277–2285, 1995.Google Scholar
  15. 15.
    S. Sen and L. Nilsson. MD simulations of homomorphous PNA, DNA, and RNA single strands: characterization and comparison of conformations and dynamics. J. Am. Chem. Soc., 123(30):7414–7422, 2001.Google Scholar
  16. 16.
    J. M. Martínez, S. K. C. Elmroth, and L. Kloo. Influence of sodium ions on the dynamics and structure of single-stranded DNA oligomers: A molecular dynamics study. J. Am. Chem. Soc., 123(49):12279–12289, 2001.Google Scholar
  17. 17.
    S. Tonzani and G. C. Schatz. Electronic excitations and spectra in single-stranded DNA. Journal of the American Chemical Society, 130(24):7607–7612, 2008.Google Scholar
  18. 18.
    O.-S. Lee and G. C. Schatz. Interaction between DNAs on a gold surface. The Journal of Physical Chemistry C, 113(36):15941–15947, 2009.Google Scholar
  19. 19.
    D. Poland and H. A. Scheraga. Theory of Helix-Coil Transitions in Biopolymers: Statistical Mechanical Theory of Order-disorder Transitions in Biological Macromolecules. Academic Press, New York, 1970.Google Scholar
  20. 20.
    J. SantaLucia, Jr. and D. Hicks. The thermodynamics of DNA structural motifs. Annu. Rev. Biophys. Biomol. Struct., 33:415–40, 2004.Google Scholar
  21. 21.
    R. D. Blake and S. G. Delcourt. Thermal stability of DNA. Nucl. Acids Res., 26(14):3323–3332, 1998.Google Scholar
  22. 22.
    M. D. Frank-Kamenetskii. Simplification of the empirical relationship between melting temperature of DNA, its GC content and concentration of sodium ions in solution. Biopolymers, 10:2623–2624, 1971.Google Scholar
  23. 23.
    E. J. Sambriski, D. C. Schwartz, and J. J. de Pablo. A mesoscal model of DNA and its renaturation. Biophys. J., 96:1675–1690, 2009.Google Scholar
  24. 24.
    D. Andreatta et al. Ultrafast dynamics in DNA: Fraying at the end of the helix. J. Am. Chem. Soc., 128(21):6885–6892, 2006.Google Scholar
  25. 25.
    S. Nonin, J.-L. Leroy, and M. Gueron. Terminal base pairs of oligodeoxynucleotides: Imino proton exchange and fraying. Biochemistry, 34(33):10652–10659, 1995.Google Scholar
  26. 26.
    D. J. Patel and C. W. Hilbers. Proton nuclear magnetic resonance investigations of fraying in double-stranded d-ApTpGpCpApT in aqueous solution. Biochemistry, 14(12):2651–2656, 1975.Google Scholar
  27. 27.
    A. Tikhomirova, N. Taulier, and T. V. Chalikian. Energetics of nucleic acid stability: The effect of \(\Delta {\rm C}_P\). J. Am. Chem. Soc., 126(50):16387–16394, 2004.Google Scholar
  28. 28.
    R. R. Sinden. DNA structure and function. Academic Press Inc., London, 1994.Google Scholar
  29. 29.
    T. E. Ouldridge, A. A. Louis, and J. P. K. Doye. DNA nanotweezers studied with a coarse-grained model of DNA. Phys. Rev. Lett., 104:178101, 2010.Google Scholar
  30. 30.
    S. J. Green, J. Bath, and A. J. Turberfield. Coordinated chemoechanical cycles: a mechanism for autonomous molecular motion. Phys. Rev. Lett., 101(23):238101, 2008.Google Scholar
  31. 31.
    J. Bois et al. Topological constraints in nucleic acid hybridization kinetics. Nucl. Acids Res., 33(13):4090–4095, 2005.Google Scholar
  32. 32.
    D. K. Hendrix, S. E. Brenner, and S. R. Holbrook. RNA structural motifs: building blocks of a modular biomolecule. Q. Rev. Biophys., 38(03):221–243, 2005.Google Scholar
  33. 33.
    S. Kuznetsov et al. A semiflexible polymer model applied to loop formation in DNA hairpins. Biophys. J., 81:2864–2875, 2001.Google Scholar
  34. 34.
    Y. You et al. Design of LNA probes that improve mismatch discrimination. Nucl. Acids Res., 34(8):e60, 2006.Google Scholar
  35. 35.
    T. Naiser et al. Position dependent mismatch discrimination on DNA microarrays - experiments and model. BMC Bioinformatics, 9(1):509, 2008.Google Scholar
  36. 36.
    R. A. Dimitrov and M. Zuker. Predictio of hybridization and melting for double-stranded nucleic acids. Biophys. J., 87:215–226, 2004.Google Scholar
  37. 37.
    N. R. Markham and M. Zuker. DINAMelt web server for nucleic acid meting prediction. Nucl. Acids Res., 33:W577–W581, 2005.Google Scholar
  38. 38.
    N. Peyret. Prediction of nucleic acid hybridization: parameters and algorithms. PhD thesis, Wayne State University, 2000.Google Scholar
  39. 39.
    D. V. Pyshnyi and E. M. Ivanova. Thermodynamic parameters of coaxial stacking on stacking hybridization of oligodeoxyribonucleotides. Russ. Chem. B+, 51:1145–1155, 2002.Google Scholar
  40. 40.
    D. V. Pyshnyi and E. M. Ivanova. The influence of nearest neighbors on the efficiency of coaxial stacking at contiguous stacking hybridization of oligodeoxyribonucleotides. Nucleos. Nucleot. Nucl., 23(6–7):1057–1064, 2004.Google Scholar
  41. 41.
    M. J. Lane et al. The thermodynamic advantage of DNA oligonucleotide ‘stacking hybridization’ reactions: Energetics of a DNA nick. Nucl. Acids Res., 25(3):611–616, 1997.Google Scholar
  42. 42.
    V. A. Vasiliskov, D. V. Prokopenko, and A. D. Mirzabekov. Parallel multiplex thermodynamic analysis of coaxial base stacking in DNA duplexes by oligodeoxyribonucleotide microchips. Nucl. Acids Res., 29(11):2303–2313, 2001.Google Scholar
  43. 43.
    S. Woo and P. W. K. Rothemund. Programmable molecular recognition based on the geometry of DNA nanostructures. Nature Chem., 3:620–627, 2011.Google Scholar
  44. 44.
    E. Protozanova, P. Yakovchuk, and M. D. Frank-Kamenetskii. Stacked-unstacked equilibrium at the nick site of DNA. J. Mol. Biol., 342(3):775–785, 2004.Google Scholar
  45. 45.
    P. Yakovchuk, E. Protozanova, and M. D. Frank-Kamenetskii. Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucl. Acids Res., 34(2):564–574, 2006.Google Scholar
  46. 46.
    T. E. Ouldridge, A. A. Louis, and J. P. K. Doye. Structural, mechanical and thermodynamic properties of a coarse-grained model of DNA. J. Chem. Phys., 134:085101, 2011.Google Scholar
  47. 47.
    N. Peyret et al. Nearest-neighbour thermodynamics and NMR of DNA sequences with internal AA, CC, GG and TT mismatches. Biochemistry, 38:3468–3477, 1999.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Thomas  E. Ouldridge
    • 1
  1. 1.University of OxfordOxfordUK

Personalised recommendations