Advertisement

Introduction

  • Thomas  E. Ouldridge
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

In this book I introduce a coarse-grained model of deoxyribonucleic acid (DNA) which is optimized for reproducing the thermodynamic and mechanical changes accompanying the formation of B-DNA duplexes from single strands. This process, known as hybridization, is a vital component of the fast-growing field of DNA nanotechnology, as well as being relevant to a wide range of biological systems.

Keywords

Single Strand Double Helix Atomistic Simulation Duplex Formation Unidirectional Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R. Dahm. Discovering DNA: Friedrich Miescher and the early years of nucleic acid research. Hum. Genet., 122(6):565–581, 2008.Google Scholar
  2. 2.
    G. K. Hunter. Phoebus Levene and the tetranucleotide structure of nucleic acids. Ambix, 46(2):73–103, 1999.Google Scholar
  3. 3.
    P. A. Levene. The structure of yeast nucleic acid: IV. ammonia hydrolysis. J. Biol. Chem., 40(2):415–424, 1919.Google Scholar
  4. 4.
    F. Griffith. The significance of pneumococcal types. J. Hyg., 27(2):113–159, 1928.Google Scholar
  5. 5.
  6. 6.
  7. 7.
    O. T. Avery, C. M. MacCleod, and M. McCarty. Studies on the chemical nature of the substance inducing transformation of pneumococcal types. J. Exp. Med., 79(2):137–158, 1944.Google Scholar
  8. 8.
    S. Neidle. Oxford Handbook of Nucleic Acid Structure. Oxford University Press, Oxford, 1999.Google Scholar
  9. 9.
    R. Franklin and R. G. Gosling. Molecular configuration in sodium thymonucleate. Nature, 171:738–740, 1953.Google Scholar
  10. 10.
    W. Saenger. Principles of Nucleic Acid Structure. Springer-Verlag, New York, 1984.Google Scholar
  11. 11.
    E. Chargaff et al. The composition of the desoxyribonucleic acid of salmon sperm. J. Biol. Chem., 192(1):223–230, 1951.Google Scholar
  12. 12.
    J. M. Creeth, J. M. Gulland, and D. O. Jordan. Deoxypentose nucleic acids; viscosity and streaming birefringence of solutions of the sodium salt of the deoxypentose nucleic acid of calf thymus. J. Chem. Soc., 25:1141–1145, 1947.Google Scholar
  13. 13.
    B. Alberts et al. Molecular Biology of the Cell, 4th ed. Garland Science, New York, 2002.Google Scholar
  14. 14.
    P. J. Hagerman. Flexibility of DNA. Ann. Rev. Biophys. Biophys. Chem., 17:265–286, 1988.Google Scholar
  15. 15.
    T. Kato et al. High-resolution structural analysis of a DNA nanostructure by cryoEM. Nano Letters, 9(7):2747–2750, 2009.Google Scholar
  16. 16.
    N. R. Kallenbach, R-I. Ma, and N. C. Seeman. An immobile nucleic acid junction constructed from oligonucleotides. Nature, 305(5937):829–831, 1983.Google Scholar
  17. 17.
    T. J. Fu and N. C. Seeman. DNA double-crossover molecules. Biochemistry, 32(13):3211, 1993.Google Scholar
  18. 18.
    H. Yan, et al. DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science, 301(5641):1882–1884, 2003.Google Scholar
  19. 19.
    E. Winfree et al. Design and self-assembly of two-dimensional DNA crystals. Nature, 394:539, 1998.Google Scholar
  20. 20.
    J. Malo et al. Engineering a 2D protein-DNA crystal. Angew. Chem. Int. Ed., 44:3057–3061, 2005.Google Scholar
  21. 21.
    J. Zheng et al. From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature, 461:74, 77, 2009.Google Scholar
  22. 22.
    D. N. Selmi et al. DNA-templated protein arrays for single-molecule imaging. Nano Lett., 11(2):657–660, 2011.Google Scholar
  23. 23.
    J. Chen and N. C. Seeman. Synthesis from DNA of a molecule with the connectivity of a cube. Nature, 350(6319):631–633, 1991.Google Scholar
  24. 24.
    Y. Zhang and N. C. Seeman. Construction of a DNA-truncated octahedron. J. Am. Chem. Soc., 116(5):1661, 1994.Google Scholar
  25. 25.
    R. P. Goodman et al. Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science, 310:1661–1665, 2005.Google Scholar
  26. 26.
    C. M. Erben, R. P. Goodman, and A. J. Turberfield. A self-assembled DNA bipyramid. J. Am. Chem. Soc., 129(22):6992–6993, 2007.Google Scholar
  27. 27.
    W. M. Shih, J. D. Quispe, and G. F. Joyce. A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature, 427(6975):618–621, 2004.Google Scholar
  28. 28.
    F. F. Andersen et al. Assembly and structural analysis of a covalently closed nano-scale DNA cage. Nucl. Acids Res., 36(4):1113–1119, 2008.Google Scholar
  29. 29.
    Y. He et al. Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature, 452:198–201, 2008.Google Scholar
  30. 30.
    Z. Li et al. A replicable tetrahedral nanostructure self-assembled from a single DNA strand. J. Am. Chem. Soc., 131(36):13093–13098, 2009.Google Scholar
  31. 31.
    P. W. K. Rothemund. Folding DNA to create nanoscale shapes and patterns. Nature, 440(7082):297–302, 2006.Google Scholar
  32. 32.
    E. S. Andersen et al. Self-assembly of a nanoscale DNA box with a controllable lid. Nature, 459:73–76, 2009.Google Scholar
  33. 33.
    Y. Ke et al. Scaffolded DNA origami of a DNA tetrahedron molecular container. Nano Lett., 9(6):2445–2447, 2009.Google Scholar
  34. 34.
    S. M. Douglas et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature, 459:414–418, 2009.Google Scholar
  35. 35.
    H. Dietz, S. M. Douglas, and W. M. Shih. Folding DNA into twisted and curved nanoscale shapes. Science, 325(5941):725–730, 2009.Google Scholar
  36. 36.
    D. Han et al. DNA origami with complex curvatures in three-dimensional space. Science, 332(6027):342–346, 2011.Google Scholar
  37. 37.
    S. F. J. Wickham et al. Direct observation of stepwise movement of a synthetic molecular transporter. Nat. Nanotechnol., 6:166–169, 2011.Google Scholar
  38. 38.
    M. J. Berardi et al. Mitochondrial uncoupling protein 2 structure determined by NMR molecular fragment searching. Nature, Published online, 2011.Google Scholar
  39. 39.
    M. Endo et al. DNA prism structures constructed by folding of multiple rectangular arms. J. Am. Chem. Soc., 131(43):15570–15571, 2009.Google Scholar
  40. 40.
    Z. Li et al. Molecular behavior of DNA origami in higher-order self-assembly. J. Am. Chem. Soc., 132(38):13545–13552, 2010.Google Scholar
  41. 41.
    S. Woo and P. W. K. Rothemund. Programmable molecular recognition based on the geometry of DNA nanostructures. Nat. Chem., 3:620–627, 2011.Google Scholar
  42. 42.
    T. Liedl et al. Self-assembly of three-dimensional prestressed tensegrity structures from DNA. Nat. Nanotechnol., 5(7):520–524, 2010.Google Scholar
  43. 43.
    F. A. Aldaye and H. F. Sleiman. Modular acces to structurally switchable 3D discrete DNA assemblies. J. Am. Chem. Soc., 129:13376–13377, 2007.Google Scholar
  44. 44.
    J. Zimmermann et al. Self-assembly of a DNA dodecahedron from 20 trisoligonucleotides with C(3h) linkers. Angew. Chem. Int. Ed., 47(19):3626–3630, 2008.Google Scholar
  45. 45.
    A. J. Kim, P. L. Biancaniello, and J. C. Crocker. Engineering DNA-mediated colloidal crystallization. Langmuir, 22(5):1991–2001, 2006.Google Scholar
  46. 46.
    S. H. Ko et al. Synergistic self-assembly of RNA and DNA molecules. Nat. Chem., 2:1050–1055, 2010.Google Scholar
  47. 47.
    P. Guo. The emerging field of RNA nanotechnology. Nat. Nanotechnol., 5:833–842, 2010.Google Scholar
  48. 48.
    A. V. Pinhiero et al. Challenges and opportunities for structural DNA nanotechnology. Nat. Nanotechnol., 6:763–772, 2011.Google Scholar
  49. 49.
    M. F. Hagan and D. Chandler. Dynamic pathways for viral capsid assembly. Biophys. J., 91:42–54, 2006.Google Scholar
  50. 50.
    A. W. Wilber et al. Reversible self-assembly of patchy particles into monodisperse icosahedral clusters. J. Chem. Phys., 127(8):085106, 2007.Google Scholar
  51. 51.
    T. E. Ouldridge et al. The self-assembly of DNA Holliday junctions studied with a minimal model. J. Chem. Phys., 130:065101, 2009.Google Scholar
  52. 52.
    J. Bath and A. J. Turberfield. DNA nanomachines. Nat. Nanotechnol., 2:275–284, 2007.Google Scholar
  53. 53.
    B. Yurke and A. Mills. Using DNA to power nanostructures. Gen. Program. Evol. Mach., 4:111–122, 2003.Google Scholar
  54. 54.
    B. Yurke et al. A DNA-fueled molecular machine made of DNA. Nature, 406:605–608, 2000.Google Scholar
  55. 55.
    R. P. Goodman et al. Reconfigurable, braced, three-dimensional DNA nanostructures. Nat. Nanotechnol., 3:93–96, 2008.Google Scholar
  56. 56.
    P. K. Lo et al. Loading and selective release of cargo in DNA nanotubes with longitudinal variation. Nat. Chem., 2:319–328, 2010.Google Scholar
  57. 57.
    D. Han et al. Folding and cutting DNA into reconfigurable topological nanostructures. Nat. Nanotechnol., 5:712–717, 2010.Google Scholar
  58. 58.
    S. M. Douglas, I. Bachelet and G. M. Church. A logic-gated nanorobot for targeted transport of molecular payloads. Science, 335:831–824, 2012.Google Scholar
  59. 59.
    W. B. Sherman and N. C. Seeman. A precisely controlled DNA biped walking device. Nano Lett., 4(7):1203–1207, 2004.Google Scholar
  60. 60.
    J.-S. Shin and N. A. Pierce. A synthetic DNA walker for molecular transport. J. Am. Chem. Soc., 126(35):10834–10835, 2004.Google Scholar
  61. 61.
    J. Bath, S. J. Green, and A. J. Turberfield. A free-running DNA motor powered by a nicking enzyme. Angew. Chem. Int. Ed., 117(28):4432–4435, 2005.Google Scholar
  62. 62.
    Y. Tian et al. A DNAzyme that walks processively and autonomously along a one-dimensional track. Angew. Chem. Int. Ed., 44(28):4355–4358, 2005.Google Scholar
  63. 63.
    A. J. Turberfield et al. DNA fuel for free-running nanomachines. Phys. Rev. Lett., 90(11):118102–118105, 2003.Google Scholar
  64. 64.
    T. Omabegho, R. Sha, and N. C. Seeman. A bipedal DNA brownian motor with coordinated legs. Science, 324:67–71, 2009.Google Scholar
  65. 65.
    J. Bath et al. Mechanism for a directional, processive and reversible DNA motor. Small, 5:1513–1516, 2009.Google Scholar
  66. 66.
    S. J. Green, J. Bath, and A. J. Turberfield. Coordinated chemoechanical cycles: a mechanism for autonomous molecular motion. Phys. Rev. Lett., 101(23):238101, 2008.Google Scholar
  67. 67.
    S. Venkataraman et al. An autonomous polymerization motor powered by DNA hybridization. Nat. Nanotechnol., 2:490–494, 2007.Google Scholar
  68. 68.
    R. A. Muscat, J. Bath, and A. J. Turberfield. A programmable molecular robot. Nano Lett., 11(3):982–987, 2011.Google Scholar
  69. 69.
    M. L. McKee et al. Multistep DNA-templated reactions for the synthesis of functional sequence controlled oligomers. Angew. Chem. Int. Ed., 49(43):7948–7951, 2010.Google Scholar
  70. 70.
    H. Gu et al. A proximity-based programmable DNA nanoscale assembly line. Nature, 465:202–205, 2010.Google Scholar
  71. 71.
    H. Liu and D. Liu. DNA nanomachines and their functional evolution. Chem. Commun. 19:2625–2636, 2009.Google Scholar
  72. 72.
    L. M. Adleman. Molecular computation of solutions to combinatorial problems. Science, 266(5187):1021–1024, 1994.Google Scholar
  73. 73.
    S. Tagore et al. DNA computation: application and perspectives. J. Proteomics Bioinform., 3:234–343, 2010.Google Scholar
  74. 74.
    G. Seelig et al. Enzyme-free nucleic acid logic circuits. Science, 314(5805):1585–1588, 2006.Google Scholar
  75. 75.
    S. Venkataraman et al. Selective cell death mediated by small conditional RNAs. Proc. Natl. Acad. Sci. U.S.A., 107(39):16777–16782, 2010.Google Scholar
  76. 76.
    T. Liedl and F. C. Simmel. Switching the conformation of a DNA molecule with a chemical oscillator. Nano Lett., 5(10):1894–1898, 2005.Google Scholar
  77. 77.
    R. R. Sinden. DNA structure and function. Academic Press Inc., London, 1994.Google Scholar
  78. 78.
    M. Orozco et al. Theoretical methods for the simulation of nucleic acids. Chem. Soc. Rev., 32:350–364, 2003.Google Scholar
  79. 79.
    R. Lavery et al. A systematic molecular dynamics study of nearest-neighbor effects on base pair and base pair step conformations and fluctuations in B-DNA. Nucl. Acids Res., 38:299–313, 2010.Google Scholar
  80. 80.
    A. Pérez, F. J. Luque, and M. Orozco. Dynamics of B-DNA on the microsecond time scale. J. Am. Chem. Soc., 129(47):14739–14745, 2007.Google Scholar
  81. 81.
    C. Mura and A. J. McCammon. Molecular dynamics of a \(\kappa \) B DNA element: base flipping via cross-strand intercalative stacking in a microsecond-scale simulation. Nucl. Acids Res., 36(15):4941–4955, 2008.Google Scholar
  82. 82.
    S. Kannan and M. Zacharias. Simulation of DNA double-strand dissociation and formation during replica-exchange molecular dynamics simulations. Phys. Chem. Chem. Phys., 11:10589–10595, 2009.Google Scholar
  83. 83.
    E. J. Sorin et al. Insights into nucleic acid conformational dynamics from massively parallel stochastic simulations. Biophys. J., 85:790–803, 2003.Google Scholar
  84. 84.
    S. Kannan and M. Zacharias. Folding a DNA hairpin loop structurre in explicit solvent using replica-exchange molecular dynaics simulations. Biophys. J., 93(9):3218–3228, 2007.Google Scholar
  85. 85.
    D. Swigon. Mathematics of DNA structure, function and interactions, volume 150 of The IMA volumes on mathematics and its applications, chapter 13, pages 293–320. Springer, New York, 2009.Google Scholar
  86. 86.
    W. B. Sherman and N. C. Seeman. Design of minimally strained nucleic acid nanotubes. Biophys. J., 90(12):4546–4557, 2006.Google Scholar
  87. 87.
    C. E. Castro, M. Bathe, and H. Dietz. A primer to scaffolded DNA origami. Nat. Meth., 8:221–229, 2011.Google Scholar
  88. 88.
    S. Khalid et al. DNA and lipid bilayers: self-assembly and insertion. J. R. Soc. Interface, 5:241–250, 2008.Google Scholar
  89. 89.
    J. Corsi et al. DNA lipoplexes: Formation of the inverse hexagonal phase observed by coarse-grained molecular dynamics simulation. Langmuir, 26(14):12119–12125, 2010.Google Scholar
  90. 90.
    D. Poland and H. A. Scheraga. Occurrence of a phase transition in nucleic acid models. J. Chem. Phys., 45:1464, 1966.Google Scholar
  91. 91.
    J. SantaLucia, Jr. A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc. Natl. Acad. Sci. U.S.A., 17(95(4)):1460–1465, 1998.Google Scholar
  92. 92.
    J. SantaLucia, Jr. and D. Hicks. The thermodynamics of DNA structural motifs. Ann. Rev. Biophys. Biomol. Struct., 33:415–440, 2004.Google Scholar
  93. 93.
    R. Everaers, S. Kumar, and C. Simm. Unified description of poly- and oligonucleotide DNA melting: nearest-neighbor, poland-sheraga, and lattice models. Phys. Rev. E, 75:041918, 2007.Google Scholar
  94. 94.
    T. Dauxois, M. Peyrard, and A. R. Bishop. Dynamics and thermodynamics of a nonlinear model for dna denaturation. Phys. Rev. E, 47(1):684–695, 1993.Google Scholar
  95. 95.
    M. Barbi et al. A twist opening model for DNA. J. Biol. Phys., 24:97–114, 1999.Google Scholar
  96. 96.
    C. Nisoli and A. R. Bishop. Thermomechanics of, DNA: theory of thermal stability under load. Phys. Rev. Lett., 107, 068102, 2011Google Scholar
  97. 97.
    N. B. Becker and R. Everaers. DNA nanomechanics: how proteins deform the double helix. J. Chem. Phys., 130:135102, 2009.Google Scholar
  98. 98.
    F. Lankaš et al. On the parameterization of rigid basepair models of DNA from molecular dynamics simulations. Phys. Chem. Chem. Phys., 11:10565–10588, 2009.Google Scholar
  99. 99.
    M. Paliy, R. Melnik, and B. A. Shapiro. Coarse graining RNA nanostructures for molecular dynamics simulations. Phys. Biol., 7(3):03601, 2010Google Scholar
  100. 100.
    F. Trovato and V. Tozzini. Supercoiling and local denaturation of plasmids with a minimalist DNA model. J. Phys. Chem. B, 112(42):13197–13200, 2008.Google Scholar
  101. 101.
    M. Sayar, B. Avşarolu, and A. Kabakçolu. Twist-writhe partitioning in a coarse-grained DNA minicircle model. Phys. Rev. E, 81:041916, 2010.Google Scholar
  102. 102.
    A. Savelyev and G. A. Papoian. Chemically accurate coarse graining of double-stranded DNA. Proc. Natl. Acad. Sci. U.S.A., 107(47):20340–20345, 2010.Google Scholar
  103. 103.
    P. D. Dans et al. A coarse grained model for atomic-detailed DNA simulations with explicit electrostatics. J. Chem. Theory Comput., 6(5):1711–1725, 2010.Google Scholar
  104. 104.
    A. Morriss-Andrews, J. Rottler, and S. S. Plotkin. A systematically coarse-grained model for DNA and its predictions for persistence length, stacking, twist and chirality. J. Chem. Phys., 132:035105, 2010.Google Scholar
  105. 105.
    K. Voltz et al. Coarse-grained force field for the nucleosome from self-consistent multiscaling. J. Comput. Chem., 29(9):1429–1439, 2008.Google Scholar
  106. 106.
    A. A. Louis. Beware of density dependent pair potentials. J. Phys. Condens. Matter, 14:9187, 2002.Google Scholar
  107. 107.
    M. E. Johnson, T. Head-Gordon, and A. A. Louis. Representability problems for coarse-grained water potentials. J. Chem. Phys., 126:144509, 2007.Google Scholar
  108. 108.
    C. Hyeon and D. Thirumalai. Mechanical unfolding of RNA hairpins. Proc. Natl. Acad. Sci. U.S.A., 102(19):6789–6794, 2005.Google Scholar
  109. 109.
    C. Hyeon and D. Thirumulai. Mechanical unfolding of RNA: from hairpins to structures with internal multiloops. Biophys. J., 92(3):731–743, 2007.Google Scholar
  110. 110.
    F. Ding et al. Ab initio RNA folding by discrete molecular dynamics: From structure prediction to folding mechanisms. RNA, 14:1164–1173, 2008.Google Scholar
  111. 111.
    S. Pasquali and P. Derreumaux. HiRE-RNA: A high resolution coarse-grained energy model for RNA. J. Phys. Chem. B, 114(37):11957–11966, 2010.Google Scholar
  112. 112.
    A. Dickson et al. Flow-dependent unfolding and refolding of an RNA by nonequilibrium umbrella sampling. J. Chem. Theory. Compur Google Scholar
  113. 113.
    K. Drukker, G. Wu, and G. C. Schatz. Model simulations of DNA denaturation dynamics. J. Chem. Phys., 114(1):579–590, 2001.Google Scholar
  114. 114.
    M. Sales-Pardo et al. Mesoscopic modelling fo nucleic acid chain dynamics. Phys. Rev. E, 71:051902, 2005.Google Scholar
  115. 115.
    F. W. Starr and F. Sciortino. Model for assembly and gelation of four-armed DNA dendrimers. J. Phys. Condens. Matter, 18:L347–L353, 2006.Google Scholar
  116. 116.
    M. Kenward and K. D. Dorfman. Brownian dynamics simulations of single-stranded DNA hairpins. J. Chem. Phys., 130:095101, 2009.Google Scholar
  117. 117.
    M. C. Linak and K. Dorfman. Analysis of a DNA simulation model through hairpin melting experiments. J. Chem. Phys., 133(12):125101–125112, 2010.Google Scholar
  118. 118.
    S. Niewieczerzał and M. Cieplak. Stretching and twisting of the DNA duplexes in coarse-grained dynamical models. J. Phys. Condens. Matter, 21(47):474221, 2009.Google Scholar
  119. 119.
    T. A. Knotts et al. A coarse grain model for DNA. J. Chem. Phys., 126, 084901, 2007.Google Scholar
  120. 120.
    F. B. Bombelli et al. DNA closed nanostructures: a structural and Monte Carlo simulation study. J. Phys. Chem. B, 112(48):15283, 15294, 2008.Google Scholar
  121. 121.
    E. J. Sambriski, V. Ortiz, and J. J. de Pablo. Sequence effects in the melting and renaturation of short DNA oligonucleotides: structure and mechanistic pathways. J. Phys. Condens. Matter, 21, 034105, 2009.Google Scholar
  122. 122.
    E. J. Sambriski, D. C. Schwartz, and J. J. de Pablo. A mesoscal model of DNA and its renaturation. Biophys. J., 96:1675–1690, 2009.Google Scholar
  123. 123.
    T. R. Prytkova et al. DNA melting in small-molecule-DNA-hybrid dimer structures: experimental characterization and coarse-grained molecular dynamics simulations. J. Phys. Chem. B, 114(8):2627–2634, 2010.Google Scholar
  124. 124.
    R. C. DeMille, T. E. Cheatham III, and V. Molinero. A coarse-grained model of DNA with explicit solvation by water and ions. J. Phys. Chem. B, 115(1):132–142, 2011.Google Scholar
  125. 125.
    V. Ortiz and J. J. de Pablo. Molecular origins of DNA flexibility: sequence effects on conformational and mechanical properties. Phys. Rev. Lett., 106(23):238107–238110, 2011.Google Scholar
  126. 126.
    J. C. Araque, A. Z. Panagiotopoulos, and M. A. Robert. Lattice model of oligonucleotide hybridization in solution. i. Model and thermodynamics. J. Chem. Phys., 134(16):165103–165116, 2011.Google Scholar
  127. 127.
    T. J. Schmitt and T. A. Knotts IV. Thermodynamics of DNA hybridization on surfaces. J. Chem. Phys., 134, 205105–205113, 2011.Google Scholar
  128. 128.
    M. J. Hoefert, E. J. Sambriski, and J. J. de Pablo. Molecular pathways in DNA-DNA hybridization of surface-bound oligonucleotides. Soft Matter, 7:560–566, 2011.Google Scholar
  129. 129.
    S. Pitchiaya and Y. Krishnan. First blueprint, now bricks: DNA as construction material on the nanoscale. Chem. Soc. Rev., 35:1111–1121, 2006.Google Scholar
  130. 130.
    M. C. Murphy et al. Probing single-stranded DNA conformational flexibility using flourescence spectroscopy. Biophys. J., 86:2530–2537, 2004.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Thomas  E. Ouldridge
    • 1
  1. 1.University of OxfordOxfordUK

Personalised recommendations