An Exact Algorithm for the Continuous Quadratic Knapsack Problem via Infimal Convolution

  • L. Bayón
  • J. M. Grau
  • M. M. Ruiz
  • P. M. Suárez
Part of the Intelligent Systems Reference Library book series (ISRL, volume 38)

Abstract

In this chapter we present an algorithm of quasi-linear complexity, based on the calculation of the infimal convolution of convex quadratic functions, that leads to the determination of the analytical optimal solution of the Continuous Quadratic Knapsack problem. The algorithm both exactly and simultaneously solves a separable uniparametric family of quadratic programming problems resulting from varying the equality constraint. We prove that the analytical solution of the problem is piecewise quadratic, continuous and, under certain conditions, belongs to the class C 1. Moreover we analyze the complexity of the algorithm presented and prove that the complexity is quasi-linear in order. We demonstrate that our algorithm is able to deal with large-scale quadratic programming problems of this type. We present a very important application: the classical Problem of Economic Dispatch. Finally, we release the source code for our algorithm in the computer language Mathematica.

Keywords

Quadratic Program Exact Algorithm Quadratic Program Problem Active Constraint Thermal Plant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Audet, C., Hansen, P., Le Digabel, S.: Exact solution of three nonconvex quadratic programming problems. In: Frontiers in Global Optimization. Nonconvex Optimization and Applications, vol. 20, pp. 25–45. Kluwer Acad. Publ., Dordrecht (2004)CrossRefGoogle Scholar
  2. 2.
    Bayón, L., Grau, J.M., Suárez, P.M.: A New Formulation of the Equivalent Thermal in Optimization of Hydrothermal Systems. Math. Probl. Eng. 8(3), 181–196 (2002)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bayón, L., Grau, J.M., Ruiz, M.M., Suárez, P.M.: New developments on equivalent thermal in hydrothermal optimization: an algorithm of approximation. J. Comput. Appl. Math. 175(1), 63–75 (2005)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Bayón, L., Grau, J.M., Ruiz, M.M., Suárez, P.M.: An analytic solution for some separable convex quadratic programming problems with equality and inequality constraints. Journal of Mathematical Inequalities 4(3), 453–465 (2010)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Bayón, L., Grau, J.M., Ruiz, M.M., Suárez, P.M.: A quasi-linear algorithm for calculating the infimal convolution of convex quadratic functions. In: Vigo-Aguiar, J. (ed.) Proceedings of the 2010 International Conference on Computational and Mathematical Methods in Science and Engineering, vol. I, pp. 169–172 (2010)Google Scholar
  6. 6.
    Cosares, S., Hochbaum, D.S.: Strongly polynomial algorithms for the quadratic transportation problem with a fixed number of sources. Math. Oper. Res. 19(1), 94–111 (1994)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Dostal, Z.: Inexact semimonotonic augmented Lagrangians with optimal feasibility convergence for convex bound and equality constrained quadratic programming. SIAM J. Numer. Anal. 43(1), 96–115 (2005)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Dostal, Z.: An optimal algorithm for bound and equality constrained quadratic programming problems with bounded spectrum. Computing 78(4), 311–328 (2006)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Goh, C.J., Yang, X.Q.: Analytic efficient solution set for multi-criteria quadratic programs. European J. Oper. Res. 92(1), 166–181 (1996)MATHCrossRefGoogle Scholar
  10. 10.
    Gould, N.I.M., Toint, P.L.: A Quadratic Programming Bibliography (2001), http://www.optimization-online.org/DB_HTML/2001/02/285.html
  11. 11.
    Gould, N.I.M., Toint, P.L.: A Quadratic Programming Page, http://www.numerical.rl.ac.uk/qp/qp.html
  12. 12.
    Kim, S., Kojima, M.: Exact Solutions of Some Nonconvex Quadratic Optimization Problems via SDP and SOCP Relaxations. Comput. Optim. Appl. 26(2), 143–154 (2003)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Megiddo, N., Tamir, A.: Linear time algorithms for some separable quadratic programming problems. Oper. Res. Lett. 13, 203–211 (1993)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Mittelmann, H.D.: Decision Tree for Optimization Software, http://plato.asu.edu/guide.html
  15. 15.
    Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)MATHGoogle Scholar
  16. 16.
    Stromberg, T.: The operation of infimal convolution. Diss. Math. 352 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • L. Bayón
    • 1
  • J. M. Grau
    • 1
  • M. M. Ruiz
    • 1
  • P. M. Suárez
    • 1
  1. 1.Department of MathematicsUniversity of OviedoOviedoSpain

Personalised recommendations