Applications of Nature Inspired Algorithms for Electrical Engineering Optimization Problems

  • Radha Thangaraj
  • Thanga Raj Chelliah
  • Millie Pant
  • Ajith Abraham
  • Pascal Bouvry
Part of the Intelligent Systems Reference Library book series (ISRL, volume 38)


This chapter presents application of two popular Nature Inspired Algorithms (NIA); Particle Swarm Optimization (PSO) and Differential Evolution (DE) algorithms for solving the optimization problems that arise in the field of electrical engineering. The main focus is on efficient utilization of electrical energy and the protection of transmission lines, the most important fields of optimization in electrical engineering having nonconvex characteristics with several equality and inequality constraints. The PSO and DE variants are applied to various electrical engineering problems including over-current relay settings in transmission lines, in-situ parameter estimation of electric motors, design and control of induction motors (IM) serving to process industries and proportional-integral (PI) controller tuning in variable speed drives.


Particle Swarm Optimization Differential Evolution Particle Swarm Optimization Algorithm Induction Motor Proportional Integral Controller 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Giang, Z.-W.: Particle Swarm Optimization to Solving the Economic Dispatch Considering the Generator Constraints. IEEE Transactions on Power Systems 18(3), 1187–1195 (2003)CrossRefGoogle Scholar
  2. 2.
    Sandgren, E.: Nonlinear Integer and Discrete Programming in Mechanical Design. In: Proc. of the ASME Design Technology Conference, Kissimme, Fl, pp. 95–105 (1988)Google Scholar
  3. 3.
    Golinski, J.: An Adaptive Optimization System Applied to Machine Synthesis. Mech. Mach. Theory 8(4), 419–436 (1973)CrossRefGoogle Scholar
  4. 4.
    Rechenberg: Evolution Strategy: Optimization of Technical systems by means of biological evolution. Fromman-Holzboog (1973)Google Scholar
  5. 5.
    Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial intelligence through a simulation of evolution. In: Maxfield, M., Callahan, A., Fogel, L.J. (eds.) Biophysics and Cybernetic Systems. Proc. of the 2nd Cybernetic Sciences Symposium, pp. 131–155 (1965)Google Scholar
  6. 6.
    Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. University of Michigan Press, Ann ArborGoogle Scholar
  7. 7.
    Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: IEEE International Conference on Neural Networks, Perth, Australia, pp. IV:1942–IV: 1948. IEEE Service Center, Piscataway (1995)Google Scholar
  8. 8.
    Storn, R., Price, K.: Differential Evolution – a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical Report, International Computer Science Institute, Berkley (1995)Google Scholar
  9. 9.
    Thangaraj, R., Pant, M., Deep, K.: Optimal Coordination of Overcurrent Relays using Modified Differential Evolution Algorithms. Engineering Applications of Artificial Intelligence 23(5), 820–829 (2010)CrossRefGoogle Scholar
  10. 10.
    Thangaraj, R., Pant, M., Thanga Raj, C., Nagar, A.K.: In-Situ Efficiency Determination of Induction Motor: A Comparative Study of Evolutionary Techniques. Applied Artificial Intelligence An International Journal 25(1), 116–140 (2011)CrossRefGoogle Scholar
  11. 11.
    Thangaraj, R., Thanga Raj, C., Pant, M., Bouvry, P., Abraham, A.: Optimal Design of Induction Motor Using Modified Differential Evolution Algorithms for Textile Mill Applications. Submitted to Applied Artificial Intelligence. Taylor and Francis (2011)Google Scholar
  12. 12.
    Thangaraj, R., Thanga Raj, C., Bouvry, P., Pant, M., Abraham, A.: Optimal Design of Induction Motor for a Spinning Machine Using Population Based Metaheuristics. In: 9th Int. Conf. on Computer Information Systems and Industrial Management Applications, Poland, pp. 341–346. IEEE Computer Society Press (2010)Google Scholar
  13. 13.
    Thangaraj, R., Thanga Raj, C., Pant, M., Abraham, A., Grosan, C.: Optimal Gain-Tuning of PI Speed Controller in Induction Motor Drives Using Particle Swarm Optimization. Logic Journal of the IGPL (2010), doi:10.1093/jigpal/jzq031Google Scholar
  14. 14.
    Thangaraj, R.: Nature Inspired Algorithms and Their Applications. Ph.D Thesis, Indian Institute of Technology Roorkee, India (2010)Google Scholar
  15. 15.
    Urdaneta, A.J., Perez, L.G., Restrepo, H.: Optimal coordination of directional overcurrent relays considering dynamic changes in the network topology. IEEE Transaction on Power Delivery 12(5), 1458–1463 (1997)CrossRefGoogle Scholar
  16. 16.
    Birla, D., Maheshwari, R.P., Gupta, H.O.: A New Nonlinear Directional Overcurrent Relay Coordination Technique, and Banes and Boons of Near-End Faults Based Approach. IEEE Transaction on Power Delivery 21(3), 1176–1182 (2006)CrossRefGoogle Scholar
  17. 17.
    Urdaneta, A.J., Nadira, R., Perez, L.: Optimal Coordination of Directional Overcurrent Relay in Interconnected Power Systems. IEEE Transaction on Power Delivery 3, 903–911 (1988)CrossRefGoogle Scholar
  18. 18.
    Deep, K., Birla, D., Maheshwari, R.P., Gupta, H.O., Takur, M.: A population based heuristic algorithm for optimal relay operating time. World Journal of Modelling and Simulation 3(3), 167–176 (2006)Google Scholar
  19. 19.
    Dipti: Hybrid Genetic Algorithms and Their Applications. Ph.D. Thesis, Dept. of Mathematics, Indian Institute of Technology Roorkee, Roorkee, India (2007)Google Scholar
  20. 20.
    Thakur, M.: New Real Coded Genetic Algorithms for Global Optimization. Ph. D thesis, Department of Mathematics, Indian Institute of Technology Roorkee, India (2007)Google Scholar
  21. 21.
    Pillay, P., Levin, V., Otaduy, P., Kueck, J.: In-Situ Induction Motor Efficiency Determination Using Genetic Algorithm. IEEE Transaction on Energy Conversion 13(4), 326–333 (1998)CrossRefGoogle Scholar
  22. 22.
    Mohan, C., Shanker, K.: A Controlled Random Search Technique for Global Optimization using Quadratic Approximation. Asia-Pacific Journal of Operational Research 11, 93–101 (1994)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Maljkovic, Z., Cettolo, M., Pavlica, M.: The Impact of the Induction Motor on Short-Circuit Current. IEEE Ind. Application Magazine 7(4), 11–17 (2001)CrossRefGoogle Scholar
  24. 24.
    Jawad, F., Ghaneei, M., Heyhani, A., Proca, A.B.: Optimal design of induction motor for electric vehicle. Electric Machines and Power Systems 28, 1177–1194 (2000)CrossRefGoogle Scholar
  25. 25.
    Chilikin, M.: Electric Drives. MIR Publishers, Moscow (1976)Google Scholar
  26. 26.
    Vesterstrom, J., Thomsen, R.: A Comparative study of Differential Evolution, Particle Swarm optimization, and Evolutionary Algorithms on Numerical Benchmark Problems. In: Proc. IEEE Cong. Evolutionary Computation, Portland, OR, pp. 1980–1987 (2004)Google Scholar
  27. 27.
    Khosla, A., Kumar, S., Ghosh, K.R.: A Comparison of Computational Efforts between Particle Swarm Optimization and Genetic Algorithm for Identification of Fuzzy Models. In: Annual Meeting of the North American Fuzzy Information Processing Society, pp. 245–250 (2007)Google Scholar
  28. 28.
    Uysal, O., Bulkan, S.: Comparison of Genetic Algorithm and Particle Swarm Optimization for Bicriteria Permutation Flowshop Scheduling Problem. International Journal of Computational Intelligence Research 4(2), 159–175 (2008)MathSciNetGoogle Scholar
  29. 29.
    Thanga Raj, C., Srivastava, S.P., Agarwal, P.: Differential Evolution based Optimal Control of Induction Motor Serving to Textile Industry. IAENG Int. Journal of Computer Science 35(2), 201–208 (2008)Google Scholar
  30. 30.
    Thanga Raj, C.: Optimal Design and Control of Three-Phase Induction Motor. Ph.D Thesis, Indian Institute of Technology Roorkee, India (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Radha Thangaraj
    • 1
  • Thanga Raj Chelliah
    • 1
  • Millie Pant
    • 2
  • Ajith Abraham
    • 3
  • Pascal Bouvry
    • 4
  1. 1.Department of Water Resources Development and ManagementIndian Institute of Technology RoorkeeRoorkeeIndia
  2. 2.Department of Paper TechnologyIndian Institute of Technology RoorkeeSaharanpurIndia
  3. 3.Machine Intelligent Research Labs (MIR Labs)Scientific Network for Innovation and Research Excellence (SNIRE)AuburnUSA
  4. 4.Faculty of Science, Technology and CommunicationsUniversity of LuxembourgLuxembourg CityLuxembourg

Personalised recommendations