Application of Evolutionary Techniques for Optimization of Chaos Control – Introduction of Three Approaches

  • Roman SenkerikEmail author
  • Zuzana Oplatkova
  • Ivan Zelinka
  • Donald David Davendra
  • Roman Jasek
Part of the Intelligent Systems Reference Library book series (ISRL, volume 38)


This research deals with the optimization of control of Hénon Map, which is a discrete chaotic system. This work introduces and compares evolutionary approach representing tuning of parameters for an existing control method either with the standard cost function using the numerical desired state as the one of the input or blackbox type cost function, as well as meta-evolutionary approach representing synthesis of a whole control law by means of Analytic Programming (AP). These three approaches are used for the purpose of stabilization of the stable state and higher periodic orbits, which stand for oscillations between several values of chaotic system. For experimentation, Self-Organizing Migrating Algorithm (SOMA) and Differential Evolution (DE) were used.


Periodic Orbit Differential Evolution Chaotic System Evolutionary Approach Chaos Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zelinka, I., Senkerik, R., Navratil, E.: Investigation on evolutionary optimization of chaos control. Chaos, Solitons & Fractals 40(1), 111–129 (2009)zbMATHCrossRefGoogle Scholar
  2. 2.
    Senkerik, R., Zelinka, I., Davendra, D., Oplatkova, Z.: Evolutionary Design of Chaos Control in 1D. In: Zelinka, I., Celikovsky, S., Richter, H., Chen, G. (eds.) Evolutionary Algorithms and Chaotic Systems. SCI, vol. 267, pp. 165–190. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Senkerik, R., Zelinka, I., Davendra, D., Oplatkova, Z.: Utilization of SOMA and differential evolution for robust stabilization of chaotic Logistic equation. Computers & Mathematics with Applications 60(4), 1026–1037 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Pyragas, K.: Control of chaos via extended delay feedback. Physics Letters A 206, 323–330 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Just, W.: Principles of Time Delayed Feedback Control. In: Schuster, H.G. (ed.) Handbook of Chaos Control, Wiley-Vch (1999)Google Scholar
  6. 6.
    Pyragas, K.: Continuous control of chaos by self-controlling feedback. Physics Letters A 170, 421–428 (1992)CrossRefGoogle Scholar
  7. 7.
    Zelinka, I., Davendra, D., Senkerik, R., Jasek, R., Oplatkova, Z.: Analytical Programming - a Novel Approach for Evolutionary Synthesis of Symbolic Structures. In: Kita, E. (ed.) Evolutionary Algorithms. InTech (2011)Google Scholar
  8. 8.
    Senkerik, R., Zelinka, I.: Evolutionary Optimization of Chaos Control - A New Approach. In: Proceedings of the 22nd European Conference on Modelling and Simulation, ECMS 2008, Nicosia, pp. 218–223 (2008)Google Scholar
  9. 9.
    Senkerik, R., Oplatkova, Z., Zelinka, I., Davendra, D.: Synthesis of feedback controller for three selected chaotic systems by means of evolutionary techniques: Analytic programming. Mathematical and Computer Modelling (2010), doi:10.1016/j.mcm.2011.05.030Google Scholar
  10. 10.
    Senkerik, R., Oplatkova, Z., Zelinka, I., Davendra, D., Jasek, R.: Evolutionary Synthesis of Control Law for Higher Periodic Orbits of Chaotic Logistic Equation. In: 25th European Conference on Modelling and Simulation. European Council for Modelling and Simulation, pp. 452–458 (2011)Google Scholar
  11. 11.
    Senkerik, R., Oplatkova, Z., Zelinka, I., Davendra, D., Jasek, R.: Synthesis of Feedback Control Law for Stabilization of Chaotic System Oscillations by means of Analytic Programming – Preliminary Study. In: 5th Global Conference on Power Control and Optimization – PCO 2011 (2011)Google Scholar
  12. 12.
    Zelinka, I., Oplatkova, Z., Nolle, L.: Boolean Symmetry Function Synthesis by Means of Arbitrary Evolutionary Algorithms-Comparative Study. International Journal of Simulation Systems, Science and Technology 6(9), 44–56 (2005) ISSN: 1473-8031Google Scholar
  13. 13.
    Lampinen, J., Zelinka, I.: New Ideas in Optimization – Mechanical Engineering Design Optimization by Differential Devolution, vol. 1, 20 p. McGraw-hill, London (1999) ISBN 007-709506-5Google Scholar
  14. 14.
    Oplatková, Z., Zelinka, I.: Investigation on Evolutionary Synthesis of Movement Commands. Modelling and Simulation in Engineering 2009, Article ID 845080, 12 pages (2009) ISSN: 1687-559Google Scholar
  15. 15.
    Hilborn, R.C.: Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers. Oxford University Press (2000)Google Scholar
  16. 16.
    Zelinka, I.: SOMA – Self Organizing Migrating Algorithm. In: Babu, B.V., Onwubolu, G. (eds.) New Optimization Techniques in Engineering, vol. 33, ch. 7. Springer (2004)Google Scholar
  17. 17.
    Price, K., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization. Natural Computing Series. Springer (1995)Google Scholar
  18. 18.
    Coelho, L.D.: Self-organizing migration algorithm applied to machining allocation of clutch assembly. Mathematics and Computers in Simulation 80(2), 427–435 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Coelho, L.D.: Self-Organizing Migrating Strategies Applied to Reliability-Redundancy Optimization of Systems. IEEE Transactions on Reliability 58(3), 501–510 (2009)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Coelho, L.D., Mariani, V.C.: An efficient cultural self-organizing migrating strategy for economic dispatch optimization with valve-point effect. Energy Conversion and Management 51(12), 2580–2587 (2010)CrossRefGoogle Scholar
  21. 21.
    Davendra, D., Zelinka, I., Senkerik, R.: Chaos driven evolutionary algorithms for the task of PID control. Computers & Mathematics with Applications 60(4), 1088–1104 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Matousek, R.: GAHC: Improved GA with HC station. In: Proceedings of WCECS 2007, San Francisco, pp. 915–920 (2007)Google Scholar
  23. 23.
    Matousek, R.: HC12: The Principle of CUDA Implementation. In: Proceedings of MENDEL 2010. Mendel Journal series, pp. 303–308 (2010) ISSN: 1803-3814Google Scholar
  24. 24.
    Zelinka, I.: SOMA homepage, (accessed September 30, 2011)
  25. 25.
    Price, K., Storn, R.M.: Differential evolution home-page (2001), (accessed September 30, 2011)

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Roman Senkerik
    • 1
    Email author
  • Zuzana Oplatkova
    • 1
  • Ivan Zelinka
    • 2
  • Donald David Davendra
    • 2
  • Roman Jasek
    • 1
  1. 1.Faculty of Applied InformaticsTomas Bata University in ZlinZlinCzech Republic
  2. 2.Faculty of Electrical Engineering and Computer ScienceTechnical University of OstravaOstrava-PorubaCzech Republic

Personalised recommendations