The Use of Optimization Methods in Business and Public Services

Part of the Intelligent Systems Reference Library book series (ISRL, volume 38)


Optimization methods have had successful applications in business and public services. Nowadays the new theories of soft computing are used for these purposes. The applications in business and public services have specific features in comparison with others. The processes are focused on private corporate attempts at money making or decreasing expenses. The optimization plays very important roles especially in business because it helps to reduce costs that can lead to higher profits and to success in the competitive fight. There are various optimization methods used: classical ones and methods using soft computing. There are especially the methods such as fuzzy logic, neural networks, evolutionary algorithms, and the theory of chaos.


Genetic Algorithm Fuzzy Logic Fitness Function Public Service Multilayer Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aliev, A., Aliev, R.: Soft Computing and Its Applications, 444 p. World Scientific Pub., UK (2002) ISBN 981-02-4700-1Google Scholar
  2. 2.
    Altroc, C.: Fuzzy Logic & Neurofuzzy—Applications in Business & Finance, 375 p. Prentice Hall, USA (1996) ISBN 0-13-591512-0Google Scholar
  3. 3.
    Azoff, E.M.: Neural Network Time Series Forecasting of Financial Markets, 196 p. John Wiley, USA (1994) ISBN 0-471-94356-8Google Scholar
  4. 4.
    Barnsley, M.F.: Fractals Everywhere, 531 p. Academic Press Professional, USA (1993) ISBN 0-12-079061-0Google Scholar
  5. 5.
    Bose, K., Liang, P.: Neural Networks, Fundamentals with Graphs, Algorithms and Applications, 478 p. McGraw-Hill, USA (1996) ISBN 0-07-114064-6Google Scholar
  6. 6.
    Davis, L.: Handbook of Genetic Algorithms, 385 p. Int. Thomson Com. Pres, USA (1991) ISBN 1-850-32825-0Google Scholar
  7. 7.
    Dostál, P.: Advanced Decision Making in Business and Public Services, 168 p. CERM, Brno (2011) ISBN 978-80-7204-747-5Google Scholar
  8. 8.
    Dostál, P.: Advanced Economic Analyses, 80 p. VUT – FP, Brno (2008) ISBN 978-80-214-3564-3Google Scholar
  9. 9.
    Ehlers, F.J.: Cybernetic Analysis for Stock and Futures, 256 p. John Wiley, USA (2004) ISBN 0-471-46307-8Google Scholar
  10. 10.
    Fransws, P.H.: Time Series Models for Business and Economic Forecasting, 213 p. Cambridge University Press, UK (2001) ISBN 0-521-58641-0Google Scholar
  11. 11.
    Gately, E.: Neural Networks for Financial Forecasting, 169 p. John Wiley, USA (1996) ISBN 0-471-11212-7Google Scholar
  12. 12.
    Gleick, J.: Chaos, 330 p. Ando Publishing (1996) ISBN 80-86047-04-0Google Scholar
  13. 13.
    Hagan, T., Demuth, B.: Neural Network Design, 702 p. PWS Publishing, USA (1996) ISBN 0-534-94332-2Google Scholar
  14. 14.
    Hanselman, D., Littlefield, B.: Mastering MATLAB 7, 852 p. Prentice Hall, USA (2005) ISBN 0-13-185714-2Google Scholar
  15. 15.
    Chen, G.: Controlling Chaos and Bifurcations in Engineering Systems, 648 p. CRC Press, China (2000) ISBN 978-3-44098-7Google Scholar
  16. 16.
    Chen, P., Jain, L., Tai, C.: Computational Economics: A Perspective from Computational Intelligence. Idea Group Publishing (2005) ISBN 1-591-406-498Google Scholar
  17. 17.
    Chen, S., Wang, P., Wen, T.: Computational Intelligence in Economics and Finance. Springer (2004) ISBN 978-3-540-72820-7Google Scholar
  18. 18.
    Chen, S., Wang, P., Wen, T.: Computational Intelligence in Economics and Finance, vol. II. Springer (2007) ISBN 978-3-540-72820-7Google Scholar
  19. 19.
    Kazabov, K., Kozma, R.: Neuro-Fuzzy—Techniques for Intelligent Information Systems, 427 p. Physica-Verlag, Germany (1998) ISBN 3-7908-1187-4. Google Scholar
  20. 20.
    Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic, 279 p. Prentice-Hall, New Jersey (1995) ISBN 0-13-101171-5 Google Scholar
  21. 21.
    Li, Z., Halong, W.A., Chen, G.: Integration of Fuzzy Logic and Chaos Theory. Springer (2006) ISBN 3-540-26899-5Google Scholar
  22. 22.
    Peters, E.E.: Fractal Market Analysis—Applying Chaos Theory to Investment & Economics, 315 p. John Wiley, USA (1994) ISBN 0-471-58524-6Google Scholar
  23. 23.
    Peters, E.E.: Chaos and Order in the Capital Markets: A New View of Cycles, 274 p. Wiley Finance Edition, Prices (1996) ISBN 0-471-13838-6Google Scholar
  24. 24.
    Trippi, R.R.: Chaos & Nonlinear Dynamics in the Financial Markets, 505 p. Irwin Professional Publishing, USA (1995) ISBN 1-55738-857-1Google Scholar
  25. 25.
    The MathWorks, MATLAB – User’s Guide, The MathWorks (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Faculty of Business and Management, Institute of InformaticsBrno University of TechnologyBrnoCzech Republic

Personalised recommendations