Flow Shop Scheduling Using a General Approach for Differential Evolution

  • Frederico Gadelha Guimarães
  • Rodrigo César Pedrosa Silva
  • Ricardo Sérgio Prado
  • Oriane Magela Neto
  • Donald David Davendra
Part of the Intelligent Systems Reference Library book series (ISRL, volume 38)

Abstract

This chapter presents a general framework of Differential Evolution algorithm for combinatorial optimization problems. We define the differences between a given pair of solutions in the differential mutation as a set of elementary movements in the discrete search space. In this way, the search mechanism and self-adaptive behavior of the differential evolution is preserved and generalized to combinatorial problems. These ideas are then applied to n-job m-machine flow shop scheduling in order to illustrate its application in an important problem in combinatorial optimization. The method was applied to the 120 Taillard instances of the permutation flow shop scheduling problem, and compared against the results obtained by other metaheuristic algorithms in the literature. Although relying only on the differential mutation and the local search performed on the best individual, dDE ranks fairly well against more sophisticated metaheuristics. The results are promising and illustrate the applicability of the proposed approach for combinatorial optimization using differential evolution.

Keywords

Local Search Differential Evolution Differential Evolution Algorithm Trial Vector Elementary Movement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbass, H.A., Sarkar, R., Newton, C.: A pareto differential evolution approach to vector optimisation problems. In: Proceedings of the IEEE Congress on Evolutionary Computation, CEC, pp. 971–978. IEEE Press (2001)Google Scholar
  2. 2.
    Aldowaisan, T., Allahverdi, A.: New heuristics for no-wait flowshops to minimize makespan. Computers & Operational Research 30, 1219–1231 (2003)MATHCrossRefGoogle Scholar
  3. 3.
    Allahverdi, A., Ng, C.T., Cheng, T.C.E., Kovalyov, M.Y.: A survey of scheduling problems with setup times or costs. European Journal of Operational Research 187(3), 985–1032 (2008)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Baker, K.R.: Introduction to Sequencing and Scheduling. Wiley, New York (1974)Google Scholar
  5. 5.
    Batista, L.S., Guimarães, F.G., Ramírez, J.A.: A differential mutation operator for the archive population of multi-objective evolutionary algorithms. In: Proceedings of the IEEE Congress on Evolutionary Computation, CEC, pp. 1108–1115. IEEE Press (2009)Google Scholar
  6. 6.
    Chakraborty, U.K. (ed.): Advances in Differential Evolution. SCI, vol. 143. Springer, Heidelberg (2008)MATHGoogle Scholar
  7. 7.
    Chen, C.-L., Vempati, V.S., Aljaber, N.: An application of genetic algorithms for flow shop problems. European Journal of Operational Research 80(2), 389–396 (1995)CrossRefGoogle Scholar
  8. 8.
    Davis, L.: Job shop scheduling with genetic algorithms. In: Proceedings of the 1st International Conference on Genetic Algorithms, pp. 136–140. L. Erlbaum Associates Inc., Hillsdale (1985)Google Scholar
  9. 9.
    Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Natural Computing Series. Springer (2003)Google Scholar
  10. 10.
    Feoktistov, V.: Differential Evolution: In Search of Solutions. Springer Optimization and Its Applications, 1st edn. Springer (October 2006)Google Scholar
  11. 11.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman (1979)Google Scholar
  12. 12.
    Garey, M.R., Johnson, D.S., Sethi, R.: The complexity of flowshop and jobshop scheduling. Mathematics of Operations Research 1, 117–129 (1976)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Gong, W., Cai, Z.: A multiobjective differential evolution algorithm for constrained optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation, CEC, pp. 181–188. IEEE Press (June 2008)Google Scholar
  14. 14.
    Kim, H.-K., Chong, J.-K., Park, K.-Y., Lowther, D.A.: Differential evolution strategy for constrained global optimization and application to practical engineering problems. IEEE Transactions on Magnetics 43(4), 1565–1568 (2007)CrossRefGoogle Scholar
  15. 15.
    Lichtblau, D.: Relative position indexing approach. In: Onwubolu, G.C., Davendra, D. (eds.) Differential Evolution: A Handbook for Global Permutation-Based Combinatorial Optimization. SCI, vol. 175, ch. 4, pp. 81–120. Springer (2009)Google Scholar
  16. 16.
    Linn, R., Zhang, W.: Hybrid flow shop scheduling: a survey. Computers & Industrial Engineering 37(1-2), 57–61 (1999)CrossRefGoogle Scholar
  17. 17.
    Madavan, N.K.: Multiobjective optimization using a Pareto differential evolution approach. In: Proceedings of the IEEE Congress on Evolutionary Computation, CEC, vol. 2, pp. 1145–1150. IEEE Press (May 2002)Google Scholar
  18. 18.
    Mezura-Montes, E., Velazquez-Reyes, J., Coello Coello, C.A.: A comparative study of differential evolution variants for global optimization. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, GECCO, pp. 485–492. ACM (2006)Google Scholar
  19. 19.
    Murata, T., Ishibuchi, H., Tanaka, H.: Genetic algorithms for flowshop scheduling problems. Computers & Industrial Engineering 30, 1061–1071 (1996)CrossRefGoogle Scholar
  20. 20.
    Onwubolu, G.C.: Design of hybrid differential evolution and group method of data handling networks for modeling and prediction. Information Sciences 178, 3616–3634 (2008)CrossRefGoogle Scholar
  21. 21.
    Onwubolu, G.C., Davendra, D. (eds.): Differential Evolution: A Handbook for Global Permutation-Based Combinatorial Optimization. SCI, vol. 175. Springer (2009)Google Scholar
  22. 22.
    Onwubolu, G.C., Davendra, D.: Scheduling flow shops using differential evolution algorithm. European Journal of Operational Research 171(2), 674–692 (2006)MATHCrossRefGoogle Scholar
  23. 23.
    Osman, I.H., Potts, C.N.: Simulated annealing for permutation flow-shop scheduling. Omega 17(6), 551–557 (1989)CrossRefGoogle Scholar
  24. 24.
    Pan, Q.K., Wang, L., Qian, B.: A novel differential evolution algorithm for bi-criteria no-wait flow shop scheduling problem. Computers & Operations Research 36(8), 2498–2511 (2009)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Pan, Q.-K., Tasgetiren, M.F., Liang, Y.-C.: A discrete differential evolution algorithm for the permutation flowshop scheduling problem. Computers & Industrial Engineering 55, 795–816 (2008)CrossRefGoogle Scholar
  26. 26.
    Pinedo, M.: Scheduling: Theory, Algorithms and Systems. Prentice-Hall (2002)Google Scholar
  27. 27.
    Price, K.V.: An introduction to differential evolution. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimisation. Advanced Topics in Computer Science, pp. 79–108. McGraw-Hill (1999)Google Scholar
  28. 28.
    Price, K.V., Storn, R.M.: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11(4), 341–359 (1997)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization, 1st edn. Natural Computing Series. Springer (December 2005)Google Scholar
  30. 30.
    Qian, B., Wang, L., Hu, R., Wang, W.-L., Huang, D.-X., Wang, X.: A hybrid differential evolution method for permutation flow-shop scheduling. The International Journal of Advanced Manufacturing Technology 38, 757–777 (2008)CrossRefGoogle Scholar
  31. 31.
    Rajendran, C., Ziegler, H.: Ant-colony algorithms for permutation flowshop scheduling to minimize makespan/total flowtime of jobs. European Journal of Operational Research 155(2), 426–438 (2004)MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Reeves, C.R.: A genetic algorithm for flowshop sequencing. Computers & Operational Research 22, 5–13 (1995)MATHCrossRefGoogle Scholar
  33. 33.
    Ruiz, R., Maroto, C., Alcaraz, J.: Two new robust genetic algorithms for the flowshop scheduling problem. Omega 34(5), 461–476 (2006)CrossRefGoogle Scholar
  34. 34.
    Ruiz, R., Stützle, T.: A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. European Journal of Operational Research 177, 2033–2049 (2007)MATHCrossRefGoogle Scholar
  35. 35.
    Stützle, T.: Applying iterated local search to the permutation flow shop problem. Technical report, AIDA-98-04, FG Intellektik, FB Informatik, TU Darmstadt (1998)Google Scholar
  36. 36.
    Taillard, E.: Some efficient heuristic methods for the flow shop sequencing problem. European Journal of Operational Research 47(1), 65–74 (1990)MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Taillard, E.: Benchmarks for basic scheduling problems. European Journal Of Operational Research 64(2), 278–285 (1993)MATHCrossRefGoogle Scholar
  38. 38.
    Wang, Y., Cai, Z., Zhang, Q.: Differential evolution with composite trial vector generation strategies and control parameters. IEEE Transactions on Evolutionary Computation 15(1), 55–66 (2011)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Widmer, M., Hertz, A.: A new heuristic method for the flow shop sequencing problem. European Journal of Operational Research 41(2), 186–193 (1989)MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Xue, F., Sanderson, A.C., Graves, R.J.: Pareto-based multi-objective differential evolution. In: Proceedings of the IEEE Congress on Evolutionary Computation, CEC, vol. 2, pp. 862–869. IEEE Press (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Frederico Gadelha Guimarães
    • 1
  • Rodrigo César Pedrosa Silva
    • 1
  • Ricardo Sérgio Prado
    • 2
  • Oriane Magela Neto
    • 1
  • Donald David Davendra
    • 3
  1. 1.Departamento de Engenharia ElétricaUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Instituto Federal Minas GeraisOuro PretoBrazil
  3. 3.Department of Computer Science, Faculty of Electrical Engineering and Computer ScienceVB-Technical University of OstravaOstravaCzech Republic

Personalised recommendations