Advertisement

Interaction Induced Dephasing of Edge States

  • Ivan Levkivskyi
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

We propose a physical model which describes dephasing in the electronic Mach-Zehnder interferometer and explains recent experimental results. According to our model, dephasing in the interferometer originates from strong Coulomb interaction at the edge of two-dimensional electron gas. The long-range character of the interaction leads to a separation of the spectrum of edge excitations on slow and fast mode. These modes are excited by electron tunneling and carry away the phase information. The new energy scale associated with the slow mode determines the temperature dependence of the visibility and the period of its oscillations as a function of voltage bias. Moreover, the variation of the lobe structure from one experiment to another is explained by specific charging effects, which are different in all experiments.

Keywords

Slow Mode Edge Channel Quantum Point Contact Outer Channel Quantum Hall System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    I. Neder, M. Heiblum, Y. Levinson, D. Mahalu, V. Umansky, Phys. Rev. Lett. 96, 016804 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    I.P. Levkivskyi, E.V. Sukhorukov, Phys. Rev. B 78, 045322 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    E.V. Sukhorukov, V.V. Cheianov, Phys. Rev. Lett. 99, 156801 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    J.T. Chalker, Y. Gefen, M.Y. Veillette, Phys. Rev. B 76, 085320 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    I. Neder, E. Ginossar, Phys. Rev. Lett. 100, 196806 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    S.-C. Youn, H.-W. Lee, H.-S. Sim, Phys. Rev. Lett. 100, 196807 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    E. Bieri, Correlation and Interference Experiments with Edge States, PhD thesis, University of Basel (2007)Google Scholar
  8. 8.
    E. Bieri, M. Weiss, O. Goktas, M. Hauser, C. Schonenberger, S. Oberholzer, Phys. Rev. B 79, 245324 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    P. Roulleau, F. Portier, D.C. Glattli, P. Roche, A. Cavanna, G. Faini, U. Gennser, D. Mailly, Phys. Rev. B 76, 161309 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    P. Roulleau, F. Portier, D.C. Glattli, P. Roche, A. Cavanna, G. Faini, U. Gennser, D. Mailly, Phys. Rev. Lett. 100, 126802 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    L.V. Litvin, H.-P. Tranitz, W. Wegscheider, C. Strunk, Phys. Rev. B 75, 033315 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    L.V. Litvin, A. Helzel, H.-P. Tranitz, W. Wegscheider, C. Strunk, Phys. Rev. B 78, 075303 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    D.B. Chklovskii, B.I. Shklovskii, L.I. Glazman, Phys. Rev. B 46, 4026 (1992)ADSCrossRefGoogle Scholar
  14. 14.
    For a review, see A.M. Chang, Rev. Mod. Phys. 75, 1449 (2003)Google Scholar
  15. 15.
    X.-G. Wen, Adv. Phys. 44, 405 (1995)Google Scholar
  16. 16.
    Th. Giamarchi, Quantum Physics in One Dimension (Oxford University Press, Oxford, 2003)CrossRefGoogle Scholar
  17. 17.
    X.-G. Wen, Quantum Field Theory of Many-body Systems (Oxford University Press, New York, 2007)CrossRefGoogle Scholar
  18. 18.
    G.D. Mahan, Many Particle Physics, 2nd edn. (Plenum, New York, 1993)Google Scholar
  19. 19.
    G. Seelig, M. Büttiker, Phys. Rev. B 64, 245313 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    G. Seelig et al., Phys. Rev. B 68, 161310 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    F. Marquardt, C. Bruder, Phys. Rev. Lett. 92, 056805 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    F. Marquardt, C. Bruder, Phys. Rev. B 70, 125305 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    J. Fröhlich, B. Pedrini, C. Schweigert, J. Walcher, J. Stat. Phys. 103, 527 (2001)zbMATHCrossRefGoogle Scholar
  24. 24.
    V.S.-W. Chung, P. Samuelsson, M. Büttiker, Phys. Rev. B 72, 125320 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    C.L. Kane, M.P. Fisher, J. Polchinski, Phys. Rev. Lett. 72, 4129 (1994)ADSCrossRefGoogle Scholar
  26. 26.
    K.T. Law, D.E. Feldman, Y. Gefen, Phys. Rev. B 74, 045319 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    V.V. Ponomarenko, D.V. Averin, Phys. Rev. Lett. 99, 066803 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    E. Ardonne, E.-A. Kim, J. Stat. Mech. L04001 (2008). doi:  10.1088/1742-5468/2008/04/L04001
  29. 29.
    B.J. Overbosch, X.-G. Wen, arXiv:0706.4339Google Scholar
  30. 30.
    W. Bishara, C. Nayak, Phys. Rev. B 77, 165302 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Theoretical PhysicsUniversity of GenevaGenevaSwitzerland

Personalised recommendations