Modelling and Analysis of the Optical Properties

  • Luca Anghinolfi
Part of the Springer Theses book series (Springer Theses)


In this chapter we will focus on the development of a theoretical modelling framework, allowing us to account for the optical response of the 2D arrays of gold nanoparticles described in the previous chapters. A theoretical support to the experimental data is of fundamental importance in order to achieve a comprehensive understanding of the origins of the optical properties of these systems, and thus to engineer the optical response by selecting a priori the proper morphological characteristics.


Optical Constant Optical Anisotropy Effective Medium Approximation Depolarization Factor Mode Redshift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    H. H. Li. Refractive index of alkali halides and its wavelength and temperature derivatives. J. Phys. Chem. Ref. Data, 5:329, 1976.Google Scholar
  2. 2.
    H. Fujiwara. Spectroscopic Ellipsometry. Principles and Applications. Wiley, 2007.Google Scholar
  3. 3.
    G. Baldacchini, O. Goncharova, V. S. Kalinov, R. M. Montereali, E. Nichelatti, A. Vincenti, and A. P. Voitovich. Optical properties of coloured lif crystals with given content of oxygen, hydroxyl and metal impurities. Phys. Stat. Sol. (c), 4:744, 2007.Google Scholar
  4. 4.
    G. Baldacchini, O. Goncharova, V. S. Kalinov, R. M. Montereali, A. Vincenti, and A. P. Voitovich. Thermal transformation of colour centres in lif crystals with given content of oxygen, hydroxyl and metal ions. Phys. Stat. Sol. (c), 4:1134, 2007.Google Scholar
  5. 5.
    Bruce T. Draine and Piotr J. Flatau. Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Am. A, 11:1491, 1994.Google Scholar
  6. 6.
    B. T. Draine. The discrete-dipole approximation and its application to interstellar graphite grains. Astr. J., 333:848, 1988.Google Scholar
  7. 7.
    P. C. Waterman. Matrix methods in potential theory and electromagnetic scattering. J. App. Phys., 50:4550, 1979.Google Scholar
  8. 8.
    Michael I. Mishchenko, Larry D. Travis, and Daniel W. Mackowski. T-matrix computations of light scattering by nonspherical particles: A review. J. Quant Spectrosc. Ra., 55:535, 1996.Google Scholar
  9. 9.
    Jian-Ming Jin. The Finite Element Method in Electromagnetics, 2nd Edition. Wiley-IEEE Press, 2002.Google Scholar
  10. 10.
    L. Gao, K. W. Yu, Z. Y. Li, and Bambi Hu. Effective nonlinear optical properties of metal-dielectric composite media with shape distribution. Phys. Rev. E, 64:036615, 2001.Google Scholar
  11. 11.
    J.D. Jackson. Classical Electrodynamics. John Wiley & Sons, 1999.Google Scholar
  12. 12.
    Bohren C.F.; Huffman D.R. Absorption and scattering of light by small particles. Wiley, 1998.Google Scholar
  13. 13.
    Rubén G. Barrera, Pedro Villaseñor González, W. Luis Mochán, and Guillermo Monsivais. Effective dielectric response of polydispersed composites. Phys. Rev. B, 41:7370, 1990.Google Scholar
  14. 14.
    Rubén G. Barrera, Marcelo del Castillo-Mussot, Guillermo Monsivais, Pedro Villaseor, and W. Luis Mochán. Optical properties of two-dimensional disordered systems on a substrate. Phys. Rev. B, 43:13819, 1991.Google Scholar
  15. 15.
    Rubén G. Barrera, Jairo Giraldo, and W. Luis Mochán. Effective dielectric response of a composite with aligned spheroidal inclusions. Phys. Rev. B, 47:8528, 1993.Google Scholar
  16. 16.
    Bashara N.M. Azzam R.M.A. Ellipsometry and Polarized Light. North Holland, 1988.Google Scholar
  17. 17.
    Stenzel O. The Physics of Thin Film Optical Spectra: An Introduction. Springer, 2010.Google Scholar
  18. 18.
    Wolf E. Born M. Principles of Optics. Cambridge University Press, 1999.Google Scholar
  19. 19.
    W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg. Optical properties of two interacting gold nanoparticles. Opt. Comm., 220:137, 2003.Google Scholar
  20. 20.
    Prashant K. Jain, Wenyu Huang, and Mostafa A. El-Sayed. On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation. Nano Letters, 7:2080, 2007.Google Scholar
  21. 21.
    Christopher Tabor, Raghunath Murali, Mahmoud Mahmoud, and Mostafa A. El-Sayed. On the use of plasmonic nanoparticle pairs as a plasmon ruler: The dependence of the near-field dipole plasmon coupling on nanoparticle size and shape. J. Phys. Chem. A, 113:1946, 2009.Google Scholar
  22. 22.
    Prashant K. Jain and Mostafa A. El-Sayed. Plasmonic coupling in noble metal nanostructures. Chem. Phys. Lett., 487:153, 2010.Google Scholar
  23. 23.
    H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer. Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping. Phys. Rev. B, 48:18178, 1993.Google Scholar
  24. 24.
    E. Stefan Kooij, Herbert Wormeester, E. A. Martijn Brouwer, Esther van Vroonhoven, Arend van Silfhout, and Bene Poelsema. Optical characterization of thin colloidal gold films by spectroscopic ellipsometry. Langmuir, 18:4401, 2002.Google Scholar
  25. 25.
    F. Bisio, M. Palombo, M. Prato, O. Cavalleri, E. Barborini, S. Vinati, M. Franchi, L. Mattera, and M. Canepa. Optical properties of cluster-assembled nanoporous gold films. Phys. Rev. B, 80:205428, 2009.Google Scholar
  26. 26.
    Stephan Link and Mostafa A. El-Sayed. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B, 103:4212, 1999.Google Scholar
  27. 27.
    M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg. Electromagnetic energy transport via linear chains of silver nanoparticles. Opt. Lett., 23:1331, 1998.Google Scholar
  28. 28.
    Mark L. Brongersma, John W. Hartman, and Harry A. Atwater. Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit. Phys. Rev. B, 62:R16356, 2000.Google Scholar
  29. 29.
    Stefan A. Maier, Pieter G. Kik, and Harry A. Atwater. Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss. App. Phys. Lett., 81:1714, 2002.Google Scholar
  30. 30.
    L. L. Zhao, K. L. Kelly, and G. C. Schatz. The extinction spectra of silver nanoparticle arrays: Influence of array structure on plasmon resonance wavelength and width. J. Phys. Chem. B, 107:7343, 2003.Google Scholar
  31. 31.
    Christy L. Haynes, Adam D. McFarland, LinLin Zhao, Richard P. Van Duyne, George C. Schatz, Linda Gunnarsson, Juris Prikulis, Bengt Kasemo, and Mikael Käll. Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays. J. Phys. Chem. B, 107:7337, 2003.Google Scholar
  32. 32.
    Erin M. Hicks, Shengli Zou, George C. Schatz, Kenneth G. Spears, Richard P. Van Duyne, Linda Gunnarsson, Tomas Rindzevicius, Bengt Kasemo, and Mikael Käll. Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography. Nano Lett., 5:1065, 2005.Google Scholar
  33. 33.
    Christopher Tabor, Desiree Van Haute, and Mostafa A. El-Sayed. Effect of orientation on plasmonic coupling between gold nanorods. ACS Nano, 3:3670, 2009.Google Scholar
  34. 34.
    K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz. Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Letters, 3:1087, 2003.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.University of GenoaGenoaItaly

Personalised recommendations