Experimental Methods

Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The subject of this thesis is the experimental study of 2-dimensional arrays of gold nanoparticles deposited on a self-organized insulating substrate. The fabrication and the optical/morphological characterization has represented a key point the research activity.

Keywords

Atomic Force Microscopy Molecular Beam Epitaxy Spectroscopic Ellipsometry Piezoelectric Stage Multimode Scan Probe Microscope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    H. Fujiwara. Spectroscopic Ellipsometry. Principles and Applications. Wiley, 2007.Google Scholar
  2. 2.
    Bashara N.M. Azzam R.M.A. Ellipsometry and Polarized Light. North Holland, 1988.Google Scholar
  3. 3.
    H. Tompkins and E. Irene. Handbook of Ellipsometry. Noyes Publications, 2005.Google Scholar
  4. 4.
    Mirko Prato, Riccardo Moroni, Francesco Bisio, Ranieri Rolandi, Lorenzo Mattera, Ornella Cavalleri, and Maurizio Canepa. Optical characterization of thiolate self-assembled monolayers on Au(111). J. Phys. Chem. C, 112:3899, 2008.Google Scholar
  5. 5.
    F. Bordi, M. Prato, O. Cavalleri, C. Cametti, M. Canepa, and A. Gliozzi. Azurin self-assembled monolayers characterized by coupling electrical impedance spectroscopy and spectroscopic ellipsometry. J. Phys. Chem. B, 108:20263, 2004.Google Scholar
  6. 6.
    Mirko Prato, Marina Alloisio, Sushilkumar A. Jadhav, Andrea Chincarini, Tiziana Svaldo-Lanero, Francesco Bisio, Ornella Cavalleri, and Maurizio Canepa. Optical properties of disulfide-functionalized diacetylene self-assembled monolayers on gold: a spectroscopic ellipsometry study. J. Phys. Chem. C, 113:20683, 2009.Google Scholar
  7. 7.
    Hicham Hamoudi, Zhiang Guo, Mirko Prato, Celine Dablemont, Wan Quan Zheng, Bernard Bourguignon, Maurizio Canepa, and Vladimir A. Esaulov. On the self assembly of short chain alkanedithiols. Phys. Chem. Chem. Phys., 10:6836, 2008.Google Scholar
  8. 8.
    Daniel W. Thompson Blaine D. Johs. Regression calibrated spectroscopic rotating compensator ellipsometer system with photo array detector. Patent, 1999.Google Scholar
  9. 9.
    J F Archard and A M Taylor. Improved Glan-Foucault prism. J. Sci. Instr., 25:407, 1948.Google Scholar
  10. 10.
    G. Binnig, C. F. Quate, and Ch. Gerber. Atomic force microscope. Phys. Rev. Lett., 56:930, 1986.Google Scholar
  11. 11.
    Y. Martin, C.C. Williams, and H.K. Wickramasinghe. Atomic force microscope force mapping and profiling on a sub 100-ascale. J. Appl. Phys., 61:4723, 1987.Google Scholar
  12. 12.
    S.N. Magonov, V. Elings, and M.-H. Whangbo. Phase imaging and stiffness in tapping-mode atomic force microscopy. Surf. Sci., 375:L385, 1997.Google Scholar
  13. 13.
    William W. Scott and Bharat Bhushan. Use of phase imaging in atomic force microscopy for measurement of viscoelastic contrast in polymer nanocomposites and molecularly thick lubricant films. Ultramicroscopy, 97:151, 2003.Google Scholar
  14. 14.
    Tisato Kajiyama, Keiji Tanaka, Isao Ohki, Shou-Ren Ge, Jeong-Sik Yoon, and Atsushi Takahara. Imaging of dynamic viscoelastic properties of a phase-separated polymer surface by forced oscillation atomic force microscopy. Macromolecules, 27(26):7932, 1994.Google Scholar
  15. 15.
    C. Daniel Frisbie, Lawrence F. Rozsnyai, Aleksandr Noy, Mark S. Wrighton, and Charles M. Lieber. Functional group imaging by chemical force microscopy. Science, 265:2071, 1994.Google Scholar
  16. 16.
    Aleksandr Noy, Dmitri V. Vezenov, and Charles M. Lieber. Chemical force microscopy. Ann. Rev. Mat. Sci., 27:381, 1997.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.University of GenoaGenoaItaly

Personalised recommendations