Skip to main content

Optimal Power Allocation for OFDM-Based Wire-Tap Channels with Arbitrarily Distributed Inputs

  • Conference paper
Book cover Wireless Internet (WICON 2011)

Included in the following conference series:

Abstract

In this paper, optimal power allocation is investigated for maximizing the secrecy rate of orthogonal frequency division multiplexing (OFDM) systems under arbitrarily distributed input signals. Considering the discrete inputs are used in practical systems rather than the commonly assumed Gaussian inputs, we focus on secrecy rate maximization under more practical finite discrete constellations in this paper. It is known that the secrecy rate achieved by Guassian distributed inputs is concave with respect to the transmission power. However, we prove that the secrecy rate of finite discrete constellations is non-concave, which makes traditional convex optimization methods not applicable to our problem. To address this non-concave power allocation problem, we propose an efficient power allocation algorithm. Its gap from optimality vanishes asymptotically at the rate \(O(1/\sqrt{N})\), and its complexity grows in order of O(N), where N is the number of sub-carriers. Numerical results are provided to illustrate the benefits and significance of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Liang, Y., Poor, H.V., Shamai, S.: Information theoretic security. Found. Trends Commun. Inf. Theory 5, 355–580 (2008)

    Article  MATH  Google Scholar 

  2. Wyner, A.: The wire-tap channel. Bell. Syst. Tech. J. 54(8), 1355–1387 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  3. Csiszar, I., Korner, J.: Broadcast channels with confidential messages. IEEE Trans. Inf. Theory 24(3), 339–348 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cheong, S.L.Y., Hellman, M.: The Gaussian wire-tap channel. IEEE Trans. Inf. Theory 24(4), 451–456 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  5. Oggier, F., Hassibi, B.: The secrecy capacity of the MIMO wiretap channel. In: Proc. 45th Annu. Allerton Conf. Communication, Control and Computing, Monticello, IL, pp. 848–855 (September 2007)

    Google Scholar 

  6. Liu, T., Shammai, S.: A note on the secrecy capacity of the multi-antenna wiretap channel. IEEE Trans. Inf. Theory 55(6), 2547–2553 (2009)

    Article  Google Scholar 

  7. Ekrem, E., Ulukus, S.: Gaussian MIMO multi-receiver wiretap channel. In: Global Telecommunications Conference, Honolulu, HI (November 2009)

    Google Scholar 

  8. Li, Z., Yates, R., Trappe, W.: Securecy capacity of independent parrallel channels. In: Proc. IEEE int. Symp. Information Theory(ISIT), Seattle, WA, pp. 356–360 (July 2006)

    Google Scholar 

  9. Liang, Y., Poor, H.V., Shamai, S.: Secure communication over fading channels. IEEE Trans. Inf. Theory 54(6), 2470–2492 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jorswieck, E., Wolf, A.: Resource allocation for the wire-tap multi-carrier broadcast channel. In: Proc. International Workshop on Multiple Access Communications (MACOM), St. Petersburg, Russia (June 2008)

    Google Scholar 

  11. Renna, F., Laurenti, N., Poor, H.V.: Physical layer security for OFDM systems. In: European Wireless Conference, Vienna, Austria (April 2011)

    Google Scholar 

  12. Luo, Z., Zhang, S.: Duality Gap Estimation and Polynomial Time Approximation for Optimal Spectrum Management. IEEE Trans. Signal Processing 57(7), 2675–2689 (2009)

    Article  MathSciNet  Google Scholar 

  13. Luo, Z., Zhang, S.: Dynamic spectrum management: Complexity and duality. IEEE J. Sel.Topics Signal Process., Special Issue on Signal Process., Netw. Dyn. Spectrum Access 2(1), 57–73 (2008)

    Google Scholar 

  14. Yu, W., Lui, R.: Dual methods for nonconvex spectrum optimization of multicarrier systems. IEEE Trans. Commun. 54, 1310–1322 (2006)

    Article  Google Scholar 

  15. Guo, D., Shamai, S., Verdu, S.: Mutual information and minimum mean-square error in Gaussian channels. IEEE Trans. Inf. Theory 51(4), 1261–1283 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Guo, D., Wu, Y., Shamai, S., Verdu, S.: Estimation in Gaussian noise: Properties of the minimum mean-square error. IEEE Trans. Inf. Theory 57(4), 2371–2385 (2011)

    Article  MathSciNet  Google Scholar 

  17. Jeffreys, H., Jeffreys, B.S.: Methods of Mathematical Physics, 3rd edn. Cambridge University Press, Cambridge (1988)

    MATH  Google Scholar 

  18. Boyd, L., Vandenberghe, S.: Convex Optimization. Cambridge University Press (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Qin, H., Sun, Y., Chen, X., Zhao, M., Wang, J. (2012). Optimal Power Allocation for OFDM-Based Wire-Tap Channels with Arbitrarily Distributed Inputs. In: Ren, P., Zhang, C., Liu, X., Liu, P., Ci, S. (eds) Wireless Internet. WICON 2011. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 98. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30493-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30493-4_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30492-7

  • Online ISBN: 978-3-642-30493-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics