Advertisement

Potential Applications of Carbon Nanotube Arrays

  • Zhifeng Ren
  • Yucheng Lan
  • Yang Wang
Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

Aligned CNT assemblies have many applications besides what were discussed in the previous chapters. In this chapter, we introduce some potential applications of aligned CNTs, which is possible from theoretical point of view but might take a long time to realize because of the immature of the needed techniques.

Keywords

Oxygen Reduction Reaction Sound Pressure Electrocatalytic Activity SWCNT Film Twisted Rope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    D.A. Walters, L.M. Ericson, M.J. Casavant, J. Liu, D.T. Colbert, K.A. Smith, R.E. Smalley, Elastic strain of freely suspended single-wall carbon nanotube ropes. Appl. Phys. Lett. 74(25), 3803–3805 (1999)ADSGoogle Scholar
  2. 2.
    M.-F. Yu, B.S. Files, S. Arepalli, R.S. Ruoff, Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84(24), 5552–5555 (2000)ADSGoogle Scholar
  3. 3.
    A. Krishnan, E. Dujardin, T.W. Ebbesen, P.N. Yianilos, M.M.J. Treacy, Young’s modulus of single-walled nanotubes. Phys. Rev. B 58, 14013–14019 (Nov 1998)ADSGoogle Scholar
  4. 4.
    E.W. Wong, P.E. Sheehan, C.M. Lieber, Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277(5334), 1971–1975 (1997)Google Scholar
  5. 5.
    M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381(6584), 678–680 (1996)ADSGoogle Scholar
  6. 6.
    M.-F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453), 637–640 (2000)Google Scholar
  7. 7.
    C. Wei, K. Cho, D. Srivastava, Tensile strength of carbon nanotubes under realistic temperature and strain rate. Phys. Rev. B 67(11), 115407 (2003)ADSGoogle Scholar
  8. 8.
    B.M. Nardelli, B.I. Yakobson, J. Bernholc, Mechanism of strain release in carbon nanotubes. Phys. Rev. B 57(8), R4277–R4280 (1998)ADSGoogle Scholar
  9. 9.
    M. Reibold, P. Paufler, A.A. Levin, W. Kochmann, N. Patzke, D.C. Meyer, Materials: carbon nanotubes in an ancient damascus sabre. Nature 444(7117), 286–286 (2006)Google Scholar
  10. 10.
    K. Sanderson, Sharpest cut from nanotube sword. Nature (2006). News at http://dx.doi.org/10.1038/news061113-11
  11. 11.
    E.T. Thostenson, W.Z. Li, D.Z. Wang, Z.F. Ren, T.W. Chou, Carbon nanotube/carbon fiber hybrid multiscale composites. J. Appl. Phys. 91(9), 6034–6037 (2002)ADSGoogle Scholar
  12. 12.
    L. Jin, C. Bower, O. Zhou, Alignment of carbon nanotubes in a polymer matrix by mechanical stretching. Appl. Phys. Lett. 73(9), 1197–1199 (1998)ADSGoogle Scholar
  13. 13.
    R. Haggenmueller, H.H. Gommans, A.G. Rinzler, J.E. Fischer, K.I. Winey, Aligned single-wall carbon nanotubes in composites by melt processing methods. Chem. Phys. Lett. 330(3–4), 219–225 (2000)ADSGoogle Scholar
  14. 14.
    B. Safadi, R. Andrews, E.A. Grulke, Multiwalled carbon nanotube polymer composites: synthesis and characterization of thin films. J. Appl. Polym. Sci. 84(14), 2660–2669 (2002)Google Scholar
  15. 15.
    A.R. Bhattacharyya, T. Sreekumar, T. Liu, S. Kumar, L.M. Ericson, R.H. Hauge, R.E. Smalley, Crystallization and orientation studies in polypropylene/single wall carbon nanotube composite. Polymer 44(8), 2373–2377 (2003)Google Scholar
  16. 16.
    E.S. Choi, J.S. Brooks, D.L. Eaton, M.S. Al-Haik, M.Y. Hussaini, H. Garmestani, D. Li, K. Dahmen, Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing. J. Appl. Phys. 94(9), 6034–6039 (2003)ADSGoogle Scholar
  17. 17.
    X. Zhang, Q. Li, T.G. Holesinger, P.N. Arendt, J. Huang, P.D. Kirven, T.G. Clapp, R.F. DePaula, X. Liao, Y. Zhao, L. Zheng, D. Peterson, Y. Zhu, Ultrastrong, stiff, and lightweight carbon-nanotube fibers. Adv. Mater. 19(23), 4198–4201 (2007)Google Scholar
  18. 18.
    Y. Dror, W. Salalha, R.L. Khalfin, Y. Cohen, A.L. Yarin, E. Zussman, Carbon nanotubes embedded in oriented polymer nanofibers by electrospinning. Langmuir 19(17), 7012–7020 (2003)Google Scholar
  19. 19.
    R. Sen, B. Zhao, D. Perea, M.E. Itkis, H. Hu, J. Love, E. Bekyarova, R.C. Haddon, Preparation of single-walled carbon nanotube reinforced polystyrene and polyurethane nanofibers and membranes by electrospinning. Nano Lett. 4(3), 459–464 (2004)ADSGoogle Scholar
  20. 20.
    J. Gao, A. Yu, M.E. Itkis, E. Bekyarova, B. Zhao, S. Niyogi, R.C. Haddon, Large-scale fabrication of aligned single-walled carbon nanotube array and hierarchical single-walled carbon nanotube assembly. J. Am. Chem. Soc. 126(51), 16698–16699 (2004)Google Scholar
  21. 21.
    J.J. Ge, H. Hou, Q. Li, M.J. Graham, A. Greiner, D.H. Reneker, F.W. Harris, S.Z.D. Cheng, Assembly of well-aligned multiwalled carbon nanotubes in confined polyacrylonitrile environments: electrospun composite nanofiber sheets. J. Am. Chem. Soc. 126(48), 15754–15761 (2004)Google Scholar
  22. 22.
    M.D. Lynch, D.L. Patrick, Organizing carbon nanotubes with liquid crystals. Nano Lett. 2(11), 1197–1201 (2002)ADSGoogle Scholar
  23. 23.
    X.L. Xie, Y.W. Mai, X.P. Zhou, Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mat. Sci. Eng. R-Rep. 49(4), 89–112 (2005)Google Scholar
  24. 24.
    M. Zhang, K.R. Atkinson, R.H. Baughman, Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 306(5700), 1358–1361 (2004)ADSGoogle Scholar
  25. 25.
    M.B. Bazbouz, G.K. Stylios, Novel mechanism for spinning continuous twisted composite nanofiber yarns. Eur. Polym. J. 44(1), 1–12 (2008)Google Scholar
  26. 26.
    K. Jiang, Q. Li, S. Fan, Nanotechnology: spinning continuous carbon nanotube yarns. Nature 419(6909), 801–801 (2002)ADSGoogle Scholar
  27. 27.
    Y.-L. Li, I.A. Kinloch, A.H. Windle, Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 304(5668), 276–278 (2004)ADSGoogle Scholar
  28. 28.
    F. Ko, Y. Gogotsi, A. Ali, N. Naguib, H. Ye, G. Yang, C. Li, P. Willis, Electrospinning of continuous carbon nanotube-filled nanofiber yarns. Adv. Mater. 15(14), 1161–1165 (2003)Google Scholar
  29. 29.
    R.B. Pipes, P. Hubert, Helical carbon nanotube arrays: mechanical properties. Compos. Sci. Technol. 62(3), 419–428 (2002)Google Scholar
  30. 30.
    J.W.S. Hearle, P. Grosberg, S. Backer, Structural Mechanics of Fibers, Yarns, and Fabrics (Wiley-Interscience, New York, 1969)Google Scholar
  31. 31.
    J.-P. Salvetat, G.A.D. Briggs, J.-M. Bonard, R.R. Bacsa, A.J. Kulik, T. Stöckli, N.A. Burnham, L. Forró, Elastic and shear moduli of single-walled carbon nanotube ropes. Phys. Rev. Lett. 82, 944–947 (Feb 1999)ADSGoogle Scholar
  32. 32.
    R.B. Pipes, P. Hubert, Scale effects in carbon nanostrutures: self-similar analysis. Nano Lett. 3(2), 239–243 (2003)ADSGoogle Scholar
  33. 33.
    B. Vigolo, A. Pénicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier, P. Poulin, Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 290(5495), 1331–1334 (2000)ADSGoogle Scholar
  34. 34.
    K. Koziol, J. Vilatela, A. Moisala, M. Motta, P. Cunniff, M. Sennett, A. Windle, High-performance carbon nanotube fiber. Science 318(5858), 1892–1895 (2007)ADSGoogle Scholar
  35. 35.
    S. Kumar, T.D. Dang, F.E. Arnold, A.R. Bhattacharyya, B.G. Min, X. Zhang, R.A. Vaia, C. Park, W.W. Adams, R.H. Hauge, R.E. Smalley, S. Ramesh, P.A. Willis, Synthesis, structure, and properties of PBO/SWNT composites. Macromolecules 35(24), 9039–9043 (2002)ADSGoogle Scholar
  36. 36.
    L.-Q. Liu, M. Eder, I. Burgert, D. Tasis, M. Prato, H.D. Wagner, One-step electrospun nanofiber-based composite ropes. Appl. Phys. Lett., 90(8), 083108 (2007)Google Scholar
  37. 37.
    J. Jia, J. Zhao, G. Xu, J. Di, Z. Yong, Y. Tao, C. Fang, Z. Zhang, X. Zhang, L. Zheng, Q. Li, A comparison of the mechanical properties of fibers spun from different carbon nanotubes. Carbon 49(4), 1333–1339 (2011)Google Scholar
  38. 38.
    K. Liu, Y. Sun, L. Chen, C. Feng, X. Feng, K. Jiang, Y. Zhao, S. Fan, Controlled growth of super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties. Nano Lett. 8(2), 700–705 (2008)Google Scholar
  39. 39.
    L.M. Ericson, H. Fan, H. Peng, V.A. Davis, W. Zhou, J. Sulpizio, Y. Wang, R. Booker, J. Vavro, C. Guthy, A.N.G. Parra-Vasquez, M.J. Kim, S. Ramesh, R.K. Saini, C. Kittrell, G. Lavin, H. Schmidt, W.W. Adams, W.E. Billups, M. Pasquali, W.-F. Hwang, R.H. Hauge, J.E. Fischer, R.E. Smalley, Macroscopic, neat, single-walled carbon nanotube fibers. Science 305(5689), 1447–1450 (2004)ADSGoogle Scholar
  40. 40.
    Z. Wu, Z. Chen, X. Du, J.M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J.R. Reynolds, D.B. Tanner, A.F. Hebard, A.G. Rinzler, Transparent, conductive carbon nanotube films. Science 305(5688), 1273–1276 (2004)ADSGoogle Scholar
  41. 41.
    L. Zhang, C. Feng, Z. Chen, L. Liu, K. Jiang, Q. Li, S. Fan, Superaligned carbon nanotube grid for high resolution transmission electron microscopy of nanomaterials. Nano Lett. 8(8), 2564–2569 (2008)ADSGoogle Scholar
  42. 42.
    L. Ge, S. Sethi, L. Ci, P.M. Ajayan, A. Dhinojwala, Carbon nanotube-based synthetic gecko tapes. Proc. Natl. Acad. Sci. U S A 104(26), 10792–10795 (2007)ADSGoogle Scholar
  43. 43.
    N.M. Mohamed, L.M. Kou, Piezoresistive effect of aligned multiwalled carbon nanotubes array. J. Appl. Sci. 11(8), 1386–1390 (2011)ADSGoogle Scholar
  44. 44.
    F.-Z. Zheng, Z.-Y. Zhou, X. Yang, Y.-K. Tang, Y. Wu, Investigation on strain-sensing suspended single-walled carbon nanotube arrays. IEEE Trans. Nanotechnol. 10(4), 694–698 (2011)Google Scholar
  45. 45.
    J. Choi, J. Kim, Batch-processed carbon nanotube wall as pressure and flow sensor. Nanotechnology 21(10), 105502 (2010)MathSciNetADSGoogle Scholar
  46. 46.
    X. Yang, Z. Zhou, D. Wang, X. Liu, High sensitivity carbon nanotubes flow-rate sensors and their performance improvement by coating. Sensors 10(5), 4898–4906 (2010)Google Scholar
  47. 47.
    S. Frank, P. Poncharal, Z.L. Wang, W.A. de Heer, Carbon nanotube quantum resistors. Science 280(5370), 1744–1746 (1998)ADSGoogle Scholar
  48. 48.
    R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Carbon nanotubes-the route toward applications. Science 297(5582), 787–792 (2002)Google Scholar
  49. 49.
    M.J. Biercuk, M.C. Llaguno, M. Radosavljevic, J.K. Hyun, A.T. Johnson, J.E. Fischer, Carbon nanotube composites for thermal management. Appl. Phys. Lett. 80(15), 2767–2769 (2002)ADSGoogle Scholar
  50. 50.
    W. Bauhofer, J.Z. Kovacs, A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 69(10), 1486–1498 (2009)Google Scholar
  51. 51.
    F. Du, J.E. Fischer, K.I. Winey, Effect of nanotube alignment on percolation conductivity in carbon nanotube/polymer composites. Phys. Rev. B 72(12), 121404 (2005)ADSGoogle Scholar
  52. 52.
    J. Sandler, J. Kirk, I. Kinloch, M. Shaffer, A. Windle, Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44(19), 5893–5899 (2003)Google Scholar
  53. 53.
    E. Bichoutskaia, A.M. Popov, Y.E. Lozovik, Nanotube-based data storage devices. Mater. Today 11(6), 38–43 (2008)Google Scholar
  54. 54.
    T. Rueckes, K. Kim, E. Joselevich, G.Y. Tseng, C.-L. Cheung, C.M. Lieber, Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289(5476), 94–97 (2000)Google Scholar
  55. 55.
    W.B. Choi, J.U. Chu, K.S. Jeong, E.J. Bae, J.-W. Lee, J.-J. Kim, J.-O. Lee, Ultrahigh-density nanotransistors by using selectively grown vertical carbon nanotubes. Appl. Phys. Lett. 79(22), 3696–3698 (2001)ADSGoogle Scholar
  56. 56.
    X. Ho, L. Ye, S.V. Rotkin, Q. Cao, S. Unarunotai, S. Salamat, M.A. Alam, J.A. Rogers, Scaling properties in transistors that use aligned arrays of single-walled carbon nanotubes. Nano Lett. 10(2), 499–503 (2010)ADSGoogle Scholar
  57. 57.
    F. Noca, J. Xu, P. Koumoutsakos, T. Werder, J. Walther, in Nanoscale ears based on artificial stereocilia, in The 140th Meeting of the Acoustical Society of America/NOISE-CON, Newport Beach, California (2000)Google Scholar
  58. 58.
    R.R. Boullosa, A.O. Santillá, A note on the use of novel thermoacoustic radiators for ultrasonic experiments: the importance of phase in a focused field. Eur. J. Phys. 27(1), 95 (2006)Google Scholar
  59. 59.
    H.D. Arnold, I.B. Crandall, The thermophone as a precision source of sound. Phys. Rev. 10(1) 22–38 (1917)Google Scholar
  60. 60.
    P. Liu, L. Liu, Y. Wei, K. Liu, Z. Chen, K. Jiang, Q. Li, S. Fan, Fast high-temperature response of carbon nanotube film and its application as an incandescent display. Adv. Mater. 21(35), 3563–3566 (2009)Google Scholar
  61. 61.
    L. Xiao, Z. Chen, C. Feng, L. Liu, Z.-Q. Bai, Y. Wang, L. Qian, Y. Zhang, Q. Li, K. Jiang, S. Fan, Flexible, stretchable, transparent carbon nanotube thin film loudspeakers. Nano Lett. 8(12), 4539–4545 (2008)ADSGoogle Scholar
  62. 62.
    E.C. Wente, The thermophone. Phys. Rev. 19(4), 333–345 (1922)ADSGoogle Scholar
  63. 63.
    L. Xiao, P. Liu, L. Liu, Q. Li, Z. Feng, S. Fan, K. Jiang, High frequency response of carbon nanotube thin film speaker in gases. J. Appl. Phys 110(8), 084311 (2011)ADSGoogle Scholar
  64. 64.
    A.E. Aliev, M.D. Lima, S. Fang, R.H. Baughman, Underwater sound generation using carbon nanotube projectors. Nano Lett. 10(7), 2374–2380 (2010)ADSGoogle Scholar
  65. 65.
    V. Vesterinen, A.O. Niskanen, J. Hassel, P. Helistö, Fundamental efficiency of nanothermophones: modeling and experiments. Nano Lett. 10, 5020–5024 (2010)ADSGoogle Scholar
  66. 66.
    K. Suzuki, S. Sakakibara, M. Okada, Y. Neo, H. Mimura, Y. Inoue, T. Murata, Study of carbon-nanotube web thermoacoustic loud speakers. Jpn. J. Appl. Phys. 50(1), 01BJ10 (2011)Google Scholar
  67. 67.
    H. Tian, T.-L. Ren, D. Xie, Y.-F. Wang, C.-J. Zhou, T.-T. Feng, D. Fu, Y. Yang, P.-G. Peng, L.-G. Wang, L.-T. Liu, Graphene-on-paper sound source devices. ACS Nano 5(6), 4878–4885 (2011)Google Scholar
  68. 68.
    H.W. Baac, J.G. Ok, H.J. Park, T. Ling, S.-L. Chen, A.J. Hart, L.J. Guo, Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation. Appl. Phys. Lett. 97(23), 234104 (2010)ADSGoogle Scholar
  69. 69.
    M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104(10), 4245–4270 (2004)Google Scholar
  70. 70.
    J. Li, A. Cassell, L. Delzeit, J. Han, M. Meyyappan, Novel three-dimensional electrodes: electrochemical properties of carbon nanotube ensembles. J. Phys. Chem. B 106(36), 9299–9305 (2002)Google Scholar
  71. 71.
    J.K. Campbell, L. Sun, R.M. Crooks, Electrochemistry using single carbon nanotubes. J. Am. Chem. Soc. 121(15), 3779–3780 (1999)Google Scholar
  72. 72.
    P. Britto, K. Santhanam, P. Ajayan, Carbon nanotube electrode for oxidation of dopamine. Bioelectrochem. Bioenerg. 41(1), 121–125 (1996)Google Scholar
  73. 73.
    J.M. Nugent, K.S.V. Santhanam, A. Rubio, P.M. Ajayan, Fast electron transfer kinetics on multiwalled carbon nanotube microbundle electrodes. Nano Lett. 1(2), 87–91 (2001)ADSGoogle Scholar
  74. 74.
    J. Wang, M. Musameh, Y. Lin, Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors. J. Am. Chem. Soc. 125(9), 2408–2409 (2003)Google Scholar
  75. 75.
    H. Luo, Z. Shi, N. Li, Z. Gu, Q. Zhuang, Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode. Anal. Chem. 73(5), 915–920 (2001)Google Scholar
  76. 76.
    G. Che, B.B. Lakshmi, E.R. Fisher, C.R. Martin, Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393(6683), 346–349 (1998)ADSGoogle Scholar
  77. 77.
    M. Musameh, J. Wang, A. Merkoci, Y. Lin, Low-potential stable nadh detection at carbon-nanotube-modified glassy carbon electrodes. Electrochem. Commun. 4(10), 743–746 (2002)Google Scholar
  78. 78.
    Y. Lin, S. Taylor, H.P. Li, K.A.S. Fernando, L.W. Qu, W. Wang, L.R. Gu, B. Zhou, Y.P. Sun, Advances toward bioapplications of carbon nanotubes. J. Mater. Chem. 14(4), 527–541 (2004)Google Scholar
  79. 79.
    P. J. Britto, K.S.V. Santhanam, A. Rubio, J.A. Alonso, P.M. Ajayan, Improved charge transfer at carbon nanotube electrodes. Adv. Mater. 11(2), 154–157 (1999)Google Scholar
  80. 80.
    B.D. McNicol, D.A.J. Rand, K.R. Williams, Direct methanol-air fuel cells for road transportation. J. Power Sources 83(1–2), 15–31 (1999)Google Scholar
  81. 81.
    A. Gamez, D. Richard, P. Gallezot, F. Gloaguen, R. Faure, R. Durand, Oxygen reduction on well-defined platinum nanoparticles inside recast ionomer. Electrochim. Acta. 41(2), 307–314 (1996)Google Scholar
  82. 82.
    J.-S. Yu, S. Kang, S.B. Yoon, G. Chai, Fabrication of ordered uniform porous carbon networks and their application to a catalyst supporter. J. Am. Chem. Soc. 124, 9382–9383 (2002)Google Scholar
  83. 83.
    H. Tang, J.H. Chen, Z.P. Huang, D.Z. Wang, Z.F. Ren, L.H. Nie, Y.F. Kuang, S.Z. Yao, High dispersion and electrocatalytic properties of platinum on well-aligned carbon nanotube arrays. Carbon 42(1), 191–197 (2004)Google Scholar
  84. 84.
    H. Dai, E.W. Wong, C.M. Lieber, Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes. Science 272(5261), 523–526 (1996)ADSGoogle Scholar
  85. 85.
    T.W. Ebbesen, P.M. Ajayan, Large-scale synthesis of carbon nanotubes. Nature 358(6383), 220–222 (1992)ADSGoogle Scholar
  86. 86.
    W. Li, C. Liang, J. Qiu, W. Zhou, H. Han, Z. Wei, G. Sun, Q. Xin, Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell. Carbon 40(5), 791–794 (2002)Google Scholar
  87. 87.
    V. Lordi, N. Yao, J. Wei, Method for supporting platinum on single-walled carbon nanotubes for a selective hydrogenation catalyst. Chem. Mater. 13, 733–737 (2001)Google Scholar
  88. 88.
    N. Jha, A.L.M. Reddy, M. Shaijumon, N. Rajalakshmi, S. Ramaprabhu, Pt-Ru/multi-walled carbon nanotubes as electrocatalysts for direct methanol fuel cell. Int. J. Hydrogen Energy 33(1), 427–433 (2008)Google Scholar
  89. 89.
    Z. Liu, X. Lin, J.Y. Lee, W. Zhang, M. Han, L.M. Gan, Preparation and characterization of platinum-based electrocatalysts on multiwalled carbon nanotubes for proton exchange membrane fuel cells. Langmuir 18(10), 4054–4060 (2002)Google Scholar
  90. 90.
    R. Yu, L. Chen, Q. Liu, J. Lin, K.-L. Tan, S.C. Ng, H.S.O. Chan, G.-Q. Xu, T.S.A. Hor, Platinum deposition on carbon nanotubes via chemical modification. Chem. Mater. 10, 718–722 (Mar. 1998)Google Scholar
  91. 91.
    J.M. Planeix, N. Coustel, B. Coq, V. Brotons, P.S. Kumbhar, R. Dutartre, P. Geneste, P. Bernier, P.M. Ajayan, Application of carbon nanotubes as supports in heterogeneous catalysis. J. Am. Chem. Soc. 116, 7935–7936 (1994)Google Scholar
  92. 92.
    I. Dumitrescu, P.R. Unwin, J.V. Macpherson, Electrochemistry at carbon nanotubes: perspective and issues. Chem. Commun. 2009(45), 6886–6901 (2009)Google Scholar
  93. 93.
    J.J. Gooding, Nanostructuring electrodes with carbon nanotubes: a review on electrochemistry and applications for sensing. Electrochim. Acta 50(15), 3049–3060 (2005)Google Scholar
  94. 94.
    N. Soin, S. Roy, L. Karlsson, J. McLaughlin, Sputter deposition of highly dispersed platinum nanoparticles on carbon nanotube arrays for fuel cell electrode material. Diamond Relat. Mater. 19(5–6), 595–598 (2010)ADSGoogle Scholar
  95. 95.
    W.-C. Fang, High methanol oxidation activity of well-dispersed Pt nanoparticles on carbon nanotubes using nitrogen doping. Nanoscale Res. Lett. 5(1), 68–73 (2010)ADSGoogle Scholar
  96. 96.
    J. Yang, D.-J. Liu, N.N. Kariuki, L.X. Chen, Aligned carbon nanotubes with built-in \(\text{FeN}_4\) active sites for electrocatalytic reduction of oxygen. Chem. Commun. 2008(3), 329–331 (2008)Google Scholar
  97. 97.
    H.B. Zhang, X.L. Liang, X. Dong, H.Y. Li, G.D. Lin, Multi-walled carbon nanotubes as a novel promoter of catalysts for CO/\(\text{CO}_2\) hydrogenation to alcohols. Catal. Surv. Asia 13(1), 41–58 (2009)Google Scholar
  98. 98.
    K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323(5915), 760–764 (2009)ADSGoogle Scholar
  99. 99.
    P. Matter, U. Ozkan, Non-metal catalysts for dioxygen reduction in an acidic electrolyte. Catal. Lett. 109(3), 115–123 (2006)Google Scholar
  100. 100.
    F. Hu, W. Chen, End-opened carbon nanotube array supported Pd as anode for alkaline fuel cells. Electrochem. Commun. 13(9), 955–958 (2011)MathSciNetGoogle Scholar
  101. 101.
    B. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Kluwer, Boston, 1999)Google Scholar
  102. 102.
    J.M. Boyea, R.E. Camacho, S.P. Turano, W.J. Ready, Carbon nanotube-based supercapacitors: technologies and markets. Nanotechnol. Law Bus. 4(1), 585–593 (2007)Google Scholar
  103. 103.
    C. Niu, E.K. Sichel, R. Hoch, D. Moy, H. Tennent, High power electrochemical capacitors based on carbon nanotube electrodes. Appl. Phys. Lett. 70(11), 1480–1482 (1997)ADSGoogle Scholar
  104. 104.
    K.H. An, W.S. Kim, Y.S. Park, J.-M. Moon, D.J. Bae, S.C. Lim, Y.S. Lee, Y.H. Lee, Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes. Adv. Funct. Mater. 11(5), 387–392 (2001)Google Scholar
  105. 105.
    H. Zhang, G.P. Cao, Y.S. Yang, Using a cut-paste method to prepare a carbon nanotube fur electrode. Nanotechnology 18(19), 195607 (2007)ADSGoogle Scholar
  106. 106.
    D. Nkosi, K.I. Ozoemena, Self-assembled nano-arrays of single-walled carbon nanotube-octa(hydroxyethylthio)phthalocyaninatoiron(II) on gold surfaces: impacts of SWCNT and solution pH on electron transfer kinetics. Electrochim. Acta 53(6), 2782–2793 (2008)Google Scholar
  107. 107.
    T. Hiraoka, T. Yamada, K. Hata, D.N. Futaba, H. Kurachi, S. Uemura, M. Yumura, S. Iijima, Synthesis of single- and double-walled carbon nanotube forests on conducting metal foils. J. Am. Chem. Soc. 128(41), 13338–13339 (2006)Google Scholar
  108. 108.
    S. Talapatra, S. Kar, S.K. Pal, R. Vajtai, L. Ci, P. Victor, M.M. Shaijumon, S. Kaur, O. Nalamasu, M.P. Ajayan, Direct growth of aligned carbon nanotubes on bulk metals. Nat. Nanotechnol. 1(2), 112–116 (2006)ADSGoogle Scholar
  109. 109.
    E. Frackowiak, Carbon materials for supercapacitor application. Phys. Chem. Chem. Phys. 9, 1774–1785 (2007)Google Scholar
  110. 110.
    L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38(9), 2520–2531 (2009)Google Scholar
  111. 111.
    E. Raymundo-Piñero, K. Kierzek, J. Machnikowski, F. Béguin, Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon 44(12), 2498–2507 (2006)Google Scholar
  112. 112.
    V.L. Pushparaj, M.M. Shaijumon, A. Kumar, S. Murugesan, L. Ci, R. Vajtai, R.J. Linhardt, O. Nalamasu, P.M. Ajayan, Flexible energy storage devices based on nanocomposite paper. Proc. Natl. Acad. Sci. U S A 104(34), 13574–13577 (2007)ADSGoogle Scholar
  113. 113.
    C. Largeot, C. Portet, J. Chmiola, P.-L. Taberna, Y. Gogotsi, P. Simon, Relation between the ion size and pore size for an electric double-layer capacitor. J. Am. Chem. Soc. 130(9), 730–2731 (2008)Google Scholar
  114. 114.
    H. Zhang, G.P. Cao, Y.S. Yang, Carbon nanotube arrays and their composites for electrochemical capacitors and lithium-ion batteries. Energy Environ. Sci. 2(9), 932–943 (2009)Google Scholar
  115. 115.
    P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)ADSGoogle Scholar
  116. 116.
    D.N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura, S. Iijima, Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat. Mater. 5, 987–994 (2006)ADSGoogle Scholar
  117. 117.
    Y. Honda, T. Haramoto, M. Takeshige, H. Shiozaki, T. Kitamura, M. Ishikawa, Aligned mwcnt sheet electrodes prepared by transfer methodology providing high-power capacitor performance. Electrochem. Solid-State Lett. 10(4), A106–A110 (2007)Google Scholar
  118. 118.
    T. Iwasaki, T. Maki, D. Yokoyama, H. Kumagai, Y. Hashimoto, T. Asari, H. Kawarada, Highly selective growth of vertically aligned double-walled carbon nanotubes by a controlled heating method and their electric double-layer capacitor properties. Phys. Stat. Sol. (RRL) 2(2), 53–55 (2008)Google Scholar
  119. 119.
    L. Gao, A. Peng, Z.Y. Wang, H. Zhang, Z. Shi, Z. Gu, G. Cao, B. Ding, Growth of aligned carbon nanotube arrays on metallic substrate and its application to supercapacitors. Solid State Commun. 146(9–10), 380–383 (2008)Google Scholar
  120. 120.
    H. Zhang, G. Cao, Z. Wang, Y. Yang, Z. Shi, Z. Gu, Tube-covering-tube nanostructured polyaniline/carbon nanotube array composite electrode with high capacitance and superior rate performance as well as good cycling stability. Electrochem. Commun. 10(7), 1056–1059 (2008)Google Scholar
  121. 121.
    H. Zhang, G. Cao, Z. Wang, Y. Yang, Z. Shi, Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. Nano Lett. 8(9), 2664–2668 (2008)ADSGoogle Scholar
  122. 122.
    C.L. Pint, N.W. Nicholas, S. Xu, Z. Sun, J.M. Tour, H.K. Schmidt, R.G. Gordon, R.H. Hauge, Three dimensional solid-state supercapacitors from aligned single-walled carbon nanotube array templates. Carbon 49(14), 4890–4897 (2011)Google Scholar
  123. 123.
    Z. Niu, W. Zhou, J. Chen, G. Feng, H. Li, W. Ma, J. Li, H. Dong, Y. Ren, D. Zhao, S. Xie, Compact-designed supercapacitors using free-standing single-walled carbon nanotube films. Energy Environ. Sci. 4(4), 1440–1446 (2011)Google Scholar
  124. 124.
    A. Arun, H.L. Poche, T. Idda, D. Acquaviva, M.F.-B. Badia, P. Pantigny, P. Salet, A.M. Ionescu, Tunable MEMS capacitors using vertical carbon nanotube arrays grown on metal lines. Nanotechnology 22(2), 025203 (2011)ADSGoogle Scholar
  125. 125.
    S.R. Sivakkumar, D.-W. Kim, Polyaniline/carbon nanotube composite cathode for rechargeable lithium polymer batteries assembled with gel polymer electrolyte. J. Electrochem. Soc. 154(2), A134–A139 (2007)Google Scholar
  126. 126.
    A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Bethune, M.J. Heben, Storage of hydrogen in single-walled carbon nanotubes. Nature 386, 3770–0379 (1997)Google Scholar
  127. 127.
    Y. Ye, C.C. Ahn, C. Witham, B. Fultz, J. Liu, A.G. Rinzler, D. Colbert, K.A. Smith, R.E. Smalley, Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Appl. Phys. Lett. 74(16), 2307–2309 (1999)ADSGoogle Scholar
  128. 128.
    C. Liu, Y.Y. Fan, M. Liu, H.T. Cong, H.M. Cheng, M.S. Dresselhaus, Hydrogen storage in single-walled carbon nanotubes at room temperature. Science 286(5442), 1127–1129 (1999)Google Scholar
  129. 129.
    P. Chen, X. Wu, J. Lin, K.L. Tan, High \(\text{H}_2\) uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science 285(5424), 91–93 (1999)Google Scholar
  130. 130.
    M.S. Dresselhaus, K.A. Williams, P.C. Eklund, Hydrogen adsorption in carbon materials. MRS Bull. 24(11), 45 (1999)Google Scholar
  131. 131.
    G.G. Tibbetts, G.P. Meisner, C.H. Olk, Hydrogen storage capacity of carbon nanotubes, filaments, and vapor-grown fibers. Carbon 39(15), 2291–2301 (2001)Google Scholar
  132. 132.
    M. Hirscher, M. Becher, M. Haluska, A. Quintel, V. Skakalova, Y.-M. Choi, U. Dettlaff-Weglikowska, S. Roth, I. Stepanek, P. Bernier, A. Leonhardt, J. Fink, Hydrogen storage in carbon nanostructures. J. Alloys Compd. 330–332, 654–658 (2002)Google Scholar
  133. 133.
    C.C. Ahn, Y. Ye, B.V. Ratnakumar, C. Witham, J.R.C. Bowman, B. Fultz, Hydrogen desorption and adsorption measurements on graphite nanofibers. Appl. Phys. Lett. 73(23), pp. 3378–3380 (1998)Google Scholar
  134. 134.
    P. Kim, C.M. Lieber, Nanotube nanotweezers. Science 286(5447), 2148–2150 (1999)Google Scholar
  135. 135.
    R.H. Baughman, C. Cui, A.A. Zakhidov, Z. Iqbal, J.N. Barisci, G.M. Spinks, G.G. Wallace, A. Mazzoldi, D.D. Rossi, A.G. Rinzler, O. Jaschinski, S. Roth, M. Kertesz, Carbon nanotube actuators. Science 284(5418), 1340–1344 (1999)ADSGoogle Scholar
  136. 136.
    V.V. Deshpande, H.-Y. Chiu, H.W.C. Postma, C. Mikó, L. Forró, M. Bockrath, Carbon nanotube linear bearing nanoswitches. Nano Lett. 6(6), 1092–1095 (2006)ADSGoogle Scholar
  137. 137.
    U. Vohrer, I. Kolaric, M.H. Haque, S. Roth, U. Detlaff-Weglikowska, Carbon nanotube sheets for the use as artificial muscles. Carbon 42(5–6), 1159–1164 (2004)Google Scholar
  138. 138.
    S. Gupta, M. Hughes, A.H. Windle, J. Robertson, Charge transfer in carbon nanotube actuators investigated using in situ raman spectroscopy. J. Appl. Phys. 95(4), 2038–2048 (2004)ADSGoogle Scholar
  139. 139.
    V.H. Ebron, Z. Yang, D.J. Seyer, M.E. Kozlov, J. Oh, H. Xie, J. Razal, L.J. Hall, J.P. Ferraris, A.G. MacDiarmid, R.H. Baughman, Fuel-powered artificial muscles. Science 311(5767), 1580–1583 (2006)ADSGoogle Scholar
  140. 140.
    G. Spinks, G. Wallace, L. Fifield, L. Dalton, A. Mazzoldi, D. De Rossi, I. Khayrullin, R. Baughman, Pneumatic carbon nanotube actuators. Adv. Mater. 14(23), 1728–1732 (2002)Google Scholar
  141. 141.
    S.V. Ahir, E.M. Terentjev, Photomechanical actuation in polymer-nanotube composites. Nat. Mater. 4(6), 491–495 (2005)ADSGoogle Scholar
  142. 142.
    A.R.T.S. Courty, J. Mine, E.M. Terentjev, Nematic elastomers with aligned carbon nanotubes: New electromechanical actuators. Europhys. Lett. 64(5), 654–660 (2003)ADSGoogle Scholar
  143. 143.
    H. Koerner, G. Price, N.A. Pearce, M. Alexander, R.A. Vaia, Remotely actuated polymer nanocomposites: stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nat. Mater. 3, 115–120 (2004)ADSGoogle Scholar
  144. 144.
    P. Miaudet, A. Derré, M. Maugey, C. Zakri, P.M. Piccione, R. Inoubli, P. Poulin, Shape and temperature memory of nanocomposites with broadened glass transition. Science 318(5854), 1294–1296 (2007)ADSGoogle Scholar
  145. 145.
    A.E. Aliev, J. Oh, M.E. Kozlov, A.A. Kuznetsov, S. Fang, A.F. Fonseca, R. Ovalle, M.D. Lima, M.H. Haque, Y.N. Gartstein, M. Zhang, A.A. Zakhidov, R.H. Baughman, Giant-stroke, superelastic carbon nanotube aerogel muscles. Science 323(5921), 1575–1578 (2009)ADSGoogle Scholar
  146. 146.
    P. Mérel, J.A. Kpetsu, C. Koechlin, S. Maine, R. Haidar, J. Pélouard, A. Sarkissian, M.I. Ionescu, X. Sun, P. Laou, S. Paradis, Infrared sensors based on multi-wall carbon nanotube films. C. R. Phys. 11(5–6), 375–380 (2010)ADSGoogle Scholar
  147. 147.
    K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D.N. Futaba, M. Yumura, K. Hata, A black body absorber from vertically aligned single-walled carbon nanotubes. Proc. Natl. Acad. Sci. U S A 106(15), 6044–6047 (2009)ADSGoogle Scholar
  148. 148.
    J.M. Xu, Highly ordered carbon nanotube arrays and IR detection. Infrared Phys. Technol. 42(3–5), 485–491 (2001)ADSGoogle Scholar
  149. 149.
    B.J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Gavalas, L.G. Bachas, Aligned multiwalled carbon nanotube membranes. Science 303(5654), 62–65 (2004)ADSGoogle Scholar
  150. 150.
    V.K.K. Upadhyayula, S.G. Deng, M.C. Mitchell, G.B. Smith, Application of carbon nanotube technology for removal of contaminants in drinking water: A review. Sci. Total Environ. 408(1), 1–13 (2009)Google Scholar
  151. 151.
    B. Hinds, Dramatic transport properties of carbon nanotube membranes for a robust protein channel mimetic platform. Curr. Opin. Solid St. M. 16(1), 1–9 (2011)Google Scholar
  152. 152.
    F. Du, L. Qu, Z. Xia, L. Feng, L. Dai, Membranes of vertically aligned superlong carbon nanotubes. Langmuir 27(13), 8437–8443 (2011)Google Scholar
  153. 153.
    Y. Abdi, M. Khalilian, E. Arzi, Enhancement in photo-induced hydrophilicity of \(TiO_2\)/CNT nanostructures by applying voltage. J. Phys. D: Appl. Phys. 44(25), 255405 (2011)Google Scholar
  154. 154.
    A. Arun, D. Acquaviva, M. Fernñdez-Bolaós, P. Salet, H. Le-Poche, P. Pantigny, T. Idda, A. Ionescu, Carbon nanotube vertical membranes for electrostatically actuated micro-electro-mechanical devices. Microelectron. Eng. 87(5–8), 1281–1283 (2010)Google Scholar
  155. 155.
    A. Arun, S. Campidelli, A. Filoramo, V. Derycke, P. Salet, A.M. Ionescu, M.F. Goffman, SWNT array resonant gate MOS transistors. Nanotechnology 22(5), 055204 (2011)ADSGoogle Scholar
  156. 156.
    F.A. Ghavanini, P. Enoksson, S. Bengtsson, P. Lundgren, Vertically aligned carbon based varactors. J. Appl. Phys. 110(2), 021101 (2011)ADSGoogle Scholar
  157. 157.
    C.J. Hu, Y.H. Lin, C.W. Tang, M.Y. Tsai, W.K. Hsu, H.F. Kuo, ZnO-coated carbon nanotubes: Flexible piezoelectric generators. Adv. Mater. 23(26), 2941–2945 (2011)Google Scholar
  158. 158.
    Y. Liu, I. Janowska, T. Romero, D. Edouard, L.D. Nguyen, O. Ersen, V. Keller, N. Keller, C. Pham-Huu, High surface-to-volume hybrid platelet reactor filled with catalytically grown vertically aligned carbon nanotubes. Catal. Today 150(1–2), 133–139 (2010)Google Scholar
  159. 159.
    J. Luo, L.P. Mark, A.E. Giannakopulos, A.W. Colburn, J.V. Macpherson, T. Drewello, P.J. Derrick, A.S. Teh, K.B. Teo, W.I. Milne, Field ionization using densely spaced arrays of nickel-tipped carbon nanotubes. Chem. Phys. Lett. 505(4–6), 126–129 (2011)ADSGoogle Scholar
  160. 160.
    K. Han, Y. Lee, D. Jun, S. Lee, K.W. Jung, S.S. Yang, Field emission ion source using a carbon nanotube array for micro time-of-flight mass spectrometer. Jpn. J. Appl. Phys. 50(6), 06GM04, (2011)Google Scholar
  161. 161.
    B.K. Sarker, M.R. Islam, F. Alzubi, S.I. Khondaker, Fabrication of aligned carbon nanotube array electrodes for organic electronic devices. Mater. Exp. 1(1), 80–85 (2011)Google Scholar
  162. 162.
    M. De Volder, S.H. Tawfick, D. Copic, A.J. Hart, Hydrogel-driven carbon nanotube microtransducers. Soft Matter 7(21), 9844–9847 (2011)ADSGoogle Scholar
  163. 163.
    C. Yuana, C. Chang, Y. Song, Hazardous industrial gases identified using a novel polymer/MWNT composite resistance sensor array. Mat. Sci. Eng. B: Solid 176(11), 821–829 (2011)Google Scholar
  164. 164.
    A. Di Bartolomeo, M. Sarno, F. Giubileo, C. Altavilla, L. Iemmo, S. Piano, F. Bobba, M. Longobardi, A. Scarfato, D. Sannino, A.M. Cucolo, P. Ciambelli, Multiwalled carbon nanotube films as small-sized temperature sensors. J. Appl. Phys. 105, 064518 (2009)ADSGoogle Scholar
  165. 165.
    C. Kocabas, H. sik Kim, T. Banks, J.A. Rogers, A.A. Pesetski, J.E. Baumgardner, S.V. Krishnaswamy, H. Zhang, Radio frequency analog electronics based on carbonnanotube transistors. Proc. Natl. Acad. Sci. U S A 105(5), 1405–1409 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of PhysicsBoston CollegeChestnut HillUSA
  2. 2.Department of PhysicsBoston CollegeChestnut HillUSA
  3. 3.Institute for Advanced Materials, Academy of Advanced OptoelectronicsSouth China Normal UniversityGuangzhouPeople’s Republic of China

Personalised recommendations