Technologies to Achieve Carbon Nanotube Alignment

  • Zhifeng Ren
  • Yucheng Lan
  • Yang Wang
Part of the NanoScience and Technology book series (NANO)


A massive number of CNTs can be in situ grown directly from reaction gases on substrate or ex situ aligned from as-grown random CNTs under various fields to preserve the strong anisotropic nature of individual CNTs. In this chapter, we introduce various techniques to fabricate CNTs along a certain direction. The morphology of aligned CNTs is illustrated and the fabrication mechanism of each technique is discussed.


Atomic Step Nanosphere Lithography Individual CNTs Crossbar Array Catalytic Nanoparticles 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    E. Jiran, C. Thompson, Capillary instabilities in thin films. J. Electron. Mater. 19(11), 1153–1160 (1990)Google Scholar
  2. 2.
    E. Jiran, C.V. Thompson, Capillary instabilities in thin, continuous films. Thin Solid Films 208(1), 23–28 (1992)Google Scholar
  3. 3.
    L. Rayleigh, On the instability of jets. Proc. Lond. Math. Soc. s1–10(1), 4–13 (1878)Google Scholar
  4. 4.
    G. Zhang, D. Mann, L. Zhang, A. Javey, Y. Li, E. Yenilmez, Q. Wang, J.P. McVittie, Y. Nishi, J. Gibbons, H. Dai, Ultra-high-yield growth of vertical single-walled carbon nanotubes: hidden roles of hydrogen and oxygen. Proc. Nat. Acad. Sci. U.S.A. 102(45), 16141–16145 (2005)Google Scholar
  5. 5.
    K. Hata, D.N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima, Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306(5700), 1362–1364 (2004)Google Scholar
  6. 6.
    G.-Y. Xiong, D. Wang, Z. Ren, Aligned millimeter-long carbon nanotube arrays grown on single crystal magnesia. Carbon 44(5), 969–973 (2006)Google Scholar
  7. 7.
    A. Cao, V.P. Veedu, X. Li, Z. Yao, M.N. Ghasemi-Nejhad, P.M. Ajayan, Multifunctional brushes made from carbon nanotubes. Nat. Mater. 4(7), 540–545 (2005)Google Scholar
  8. 8.
    S. Chakrabarti, T. Nagasaka, Y. Yoshikawa, L. Pan, Y. Nakayama, Growth of super long aligned brush-like carbon nanotubes. Jpn. J. Appl. Phys. 45(28), L720–L722 (2006)Google Scholar
  9. 9.
    S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H. Dai, Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283(5401), 512–514 (1999)Google Scholar
  10. 10.
    J. Kong, H.T. Soh, A.M. Cassell, C.F. Quate, H. Dai, Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395(6705), 878–881 (1998)Google Scholar
  11. 11.
    R. Andrews, D. Jacques, A.M. Rao, F. Derbyshire, D. Qian, X. Fan, E.C. Dickey, J. Chen, Continuous production of aligned carbon nanotubes: a step closer to commercial realization. Chem. Phys. Lett. 303(5–6), 467–474 (1999)Google Scholar
  12. 12.
    S. Sato, A. Kawabata, M. Nihei, Y. Awano, Growth of diameter-controlled carbon nanotubes using monodisperse nickel nanoparticles obtained with a differential mobility analyzer. Chem. Phys. Lett. 382(3–4), 361–366 (2003)Google Scholar
  13. 13.
    X. Li, A. Cao, Y.J. Jung, R. Vajtai, P.M. Ajayan, Bottom-up growth of carbon nanotube multilayers: unprecedented growth. Nano Lett. 5(10), 1997–2000 (2005)Google Scholar
  14. 14.
    L. Zhu, D.W. Hess, C.-P. Wong, Monitoring carbon nanotube growth by formation of nanotube stacks and investigation of the diffusion-controlled kinetics. J. Phys. Chem. B 110(11), 5445–5449 (2006)Google Scholar
  15. 15.
    W. Zhou, L. Ding, S. Yang, J. Liu, Orthogonal orientation control of carbon nanotube growth. J. Am. Chem. Soc. 132(1), 336–341 (2010)Google Scholar
  16. 16.
    Y. Zhang, A. Chang, J. Cao, Q. Wang, W. Kim, Y. Li, N. Morris, E. Yenilmez, J. Kong, H. Dai, Electric-field-directed growth of aligned single-walled carbon nanotubes. Appl. Phys. Lett. 79(19), 3155–3157 (2001)Google Scholar
  17. 17.
    L.X. Benedict, S.G. Louie, M.L. Cohen, Static polarizabilities of single-wall carbon nanotubes. Phys. Rev. B 52(11), 8541–8549 (1995)Google Scholar
  18. 18.
    A. Ural, Y. Li, H. Dai, Electric-field-aligned growth of single-walled carbon nanotubes on surfaces. Appl. Phys. Lett. 81(18), 3464–3466 (2002)Google Scholar
  19. 19.
    E. Joselevich, C.M. Lieber, Vectorial growth of metallic and semiconducting single-wall carbon nanotubes. Nano Lett. 2(10), 1137–1141 (2002)Google Scholar
  20. 20.
    I. Radu, Y. Hanein, D.H. Cobden, Oriented growth of single-wall carbon nanotubes using alumina patterns. Nanotechnology 15(5), 473 (2004)Google Scholar
  21. 21.
    R.S. Johnson, G. Lucovsky, I. Baumvol, Physical and electrical properties of noncrystalline \(\text{Al}_2\text{O}_3\) prepared by remote plasma enhanced chemical vapor deposition. J. Vac. Sci. Technol. A 19(4), 1353–1360 (2001)Google Scholar
  22. 22.
    J.G. Wen, Z.P. Huang, D.Z. Wang, J.H. Chen, S.X. Yang, Z.F. Ren, J.H. Wang, L.E. Calvet, J. Chen, J.F. Klemic, M. Reed, Growth and characterization of aligned carbon nanotubes from patterned nickel nanodots and uniform thin films. J. Mater. Res. 16(11), 3246–3253 (2001)Google Scholar
  23. 23.
    C. Bower, O. Zhou, W. Zhu, D.J. Werder, S. Jin, Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition. Appl. Phys. Lett. 77(17), 2767–2769 (2000)Google Scholar
  24. 24.
    A. Nojeh, A. Ural, R.F. Pease, H. Dai, Electric-field-directed growth of carbon nanotubes in two dimensions. J. Vac. Sci. Technol. B 22(6), 3421–3425 (2004)Google Scholar
  25. 25.
    Y. Gao, Y.S. Zhou, W. Xiong, M. Mahjouri-Samani, M. Mitchell, Y.F. Lu, Controlled growth of carbon nanotubes on electrodes under different bias polarity. Appl. Phys. Lett. 95(14), 143117 (2009)Google Scholar
  26. 26.
    A. Ismach, E. Joselevich, Orthogonal self-assembly of carbon nanotube crossbar architectures by simultaneous graphoepitaxy and field-directed growth. Nano Lett. 6(8), 1706–1710 (2006)Google Scholar
  27. 27.
    S. Huang, X. Cai, C. Du, J. Liu, Oriented long single walled carbon nanotubes on substrates from floating catalysts. J. Phys. Chem. B 107(48), 13251–13254 (2003)Google Scholar
  28. 28.
    S. Huang, X. Cai, J. Liu, Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates. J. Am. Chem. Soc. 125(19), 5636–5637 (2003)Google Scholar
  29. 29.
    S. Huang, Q. Fu, L. An, J. Liu, Growth of aligned swnt arrays from water-soluble molecular clusters for nanotube device fabrication. Phys. Chem. Chem. Phys. 6(6), 1077–1079 (2004)Google Scholar
  30. 30.
    S. Huang, B. Maynor, X. Cai, J. Liu, Ultralong, well-aligned single-walled carbon nanotube architectureson surfaces. Adv. Mater. 15(19), 1651–1655 (2003)Google Scholar
  31. 31.
    B.H. Hong, J.Y. Lee, T. Beetz, Y. Zhu, P. Kim, K.S. Kim, Quasi-continuous growth of ultralong carbon nanotube arrays. J. Am. Chem. Soc. 127(44), 15336–15337 (2005)Google Scholar
  32. 32.
    W. Zhou, Z. Han, J. Wang, Y. Zhang, Z. Jin, X. Sun, Y. Zhang, C. Yan, Y. Li, Copper catalyzing growth of single-walled carbon nanotubes on substrates. Nano Lett. 6(12), 2987–2990 (2006)Google Scholar
  33. 33.
    Z. Jin, H. Chu, J. Wang, J. Hong, W. Tan, Y. Li, Ultralow feeding gas flow guiding growth of large-scale horizontally aligned single-walled carbon nanotube arrays. Nano Lett. 7(7), 2073–2079 (2007)Google Scholar
  34. 34.
    Z. Yu, S. Li, P.J. Burke, Synthesis of aligned arrays of millimeter long, straight single-walled carbon nanotubes. Chem. Mater. 16(18), 3414–3416 (2004)Google Scholar
  35. 35.
    Y. Li, D. Mann, M. Rolandi, W. Kim, A. Ural, S. Hung, A. Javey, J. Cao, D. Wang, E. Yenilmez, Q. Wang, J.F. Gibbons, Y. Nishi, H. Dai, Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method. Nano Lett. 4(2), 317–321 (2004)Google Scholar
  36. 36.
    L. Huang, B. White, M.Y. Sfeir, M. Huang, H.X. Huang, S. Wind, J. Hone, S. O’Brien, Cobalt ultrathin film catalyzed ethanol chemical vapor deposition of single-walled carbon nanotubes. J. Phys. Chem. B 110(23), 11103–11109 (2006)Google Scholar
  37. 37.
    C. Kocabas, M. Shim, J.A. Rogers, Spatially selective guided growth of high-coverage arrays and random networks of single-walled carbon nanotubes and their integration into electronic devices. J. Am. Chem. Soc. 128(14), 4540–4541 (2006)Google Scholar
  38. 38.
    E. Joselevich, H. Dai, J. Liu, K. Hata, and A. H. Windle, Carbon nanotube synthesis and organization in Carbon Nanotubes. in Advanced Topics in the Synthesis, Structure, Properties and Applications, vol. 111 of Topics in Applied Physics (Springer, Berlin, 2008), pp. 101–164Google Scholar
  39. 39.
    Q. Yu, G. Qin, H. Li, Z. Xia, Y. Nian, S.-S. Pei, Mechanism of horizontally aligned growth of single-wall carbon nanotubes on \(r\)-plane sapphire. J. Phys. Chem. B 110(45), 22676–22680 (2006)Google Scholar
  40. 40.
    M. Su, Y. Li, B. Maynor, A. Buldum, J.P. Lu, J. Liu, Lattice-oriented growth of single-walled carbon nanotubes. J. Phys. Chem. B 104(28), 6505–6508 (2000)Google Scholar
  41. 41.
    M. Tominaga, A. Ohira, A. Kubo, I. Taniguchi, M. Kunitake, Growth of carbon nanotubes on a gold (111) surface using two-dimensional iron oxide nano-particle catalysts derived from iron storage protein. Chem. Commun. 2004(13), 1518–1519 (2004)Google Scholar
  42. 42.
    V. Derycke, R. Martel, M. Radosavljević, F.M. Ross, P. Avouris, Catalyst-free growth of ordered single-walled carbon nanotube networks. Nano Lett. 2(10), 1043–1046 (2002)Google Scholar
  43. 43.
    L.B. Ruppalt, P.M. Albrecht, J.W. Lyding, Atomic resolution scanning tunneling microscope study of single-walled carbon nanotubes on GaAs(110). J. Vac. Sci. Technol. B 22(4), 2005–2007 (2004)Google Scholar
  44. 44.
    N. Ishigami, H. Ago, T. Nishi, K.-i. Ikeda, M. Tsuji, T. Ikuta, K. Takahashi, Unidirectional growth of single-walled carbon nanotubes. J. Am. Chem. Soc. 130(51), 17264–17265 (2008)Google Scholar
  45. 45.
    S. Han, X. Liu, C. Zhou, Template-free directional growth of single-walled carbon nanotubes on \(a\)- and \(r\)-plane sapphire. J. Am. Chem. Soc. 127(15), 5294–5295 (2005)Google Scholar
  46. 46.
    H. Ago, K. Imamoto, N. Ishigami, R. Ohdo, K.-I. Ikeda, M. Tsuji, Competition and cooperation between lattice-oriented growth and step-templated growth of aligned carbon nanotubes on sapphire. Appl. Phys. Lett. 90(12), 123112 (2007)Google Scholar
  47. 47.
    H. Ago, K. Nakamura, K.-I. Ikeda, N. Uehara, N. Ishigami, M. Tsuji, Aligned growth of isolated single-walled carbon nanotubes programmed by atomic arrangement of substrate surface. Chem. Phys. Lett. 408(4–6), 433–438 (2005)Google Scholar
  48. 48.
    A. Rutkowska, D. Walker, S. Gorfman, P.A. Thomas, J.V. Macpherson, Horizontal alignment of chemical vapor-deposited swnts on single-crystal quartz surfaces: further evidence for epitaxial alignment. J. Phys. Chem. C 113(39), 17087–17096 (2009)Google Scholar
  49. 49.
    H. Ago, N. Uehara, K.-I. Ikeda, R. Ohdo, K. Nakamura, M. Tsuji, Synthesis of horizontally-aligned single-walled carbon nanotubes with controllable density on sapphire surface and polarized raman spectroscopy. Chem. Phys. Lett. 421(4–6), 399–403 (2006)Google Scholar
  50. 50.
    T. Ozel, D. Abdula, E. Hwang, M. Shim, Nonuniform compressive strain in horizontally aligned single-walled carbon nanotubes grown on single crystal quartz. ACS Nano 3(8), 2217–2224 (2009)Google Scholar
  51. 51.
    A. Ismach, L. Segev, E. Wachtel, E. Joselevich, Atomic-step-templated formation of single wall carbon nanotube patterns. Angew. Chem. Int. Ed. 43(45), 6140–6143 (2004)Google Scholar
  52. 52.
    H. Ago, K. Imamoto, T. Nishi, M. Tsuji, T. Ikuta, K. Takahashi, M. Fukui, Direct growth of bent carbon nanotubes on surface engineered sapphire. J. Phys. Chem. C 113(30), 13121–13124 (2009)Google Scholar
  53. 53.
    H. Ago, T. Nishi, K. Imamoto, N. Ishigami, M. Tsuji, T. Ikuta, K. Takahashi, Orthogonal growth of horizontally aligned single-walled carbon nanotube arrays. J. Phys. Chem. C 114(30), 12925–12930 (2010)Google Scholar
  54. 54.
    N. Yoshihara, H. Ago, K. Imamoto, M. Tsuji, T. Ikuta, K. Takahashi, Horizontally aligned growth of single-walled carbon nanotubes on a surface-modified silicon wafer. J. Phys. Chem. C 113(19), 8030–8034 (2009)Google Scholar
  55. 55.
    C.M. Orofeo, H. Ago, N. Yoshihara, M. Tsuji, Top-down approach to align single-walled carbon nanotubes on silicon substrate. Appl. Phys. Lett. 94(5), 053113 (2009)Google Scholar
  56. 56.
    T. Kamimura, K. Matsumoto, Controlling direction of growth of carbon nanotubes on patterned \(\text{ SiO}_{2}\) substrate. Appl. Phys. Express 2(1), 015005 (2009)Google Scholar
  57. 57.
    C. Kocabas, S. Hur, A. Gaur, M.A. Meitl, M. Shim, J.A. Rogers, Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors. Small 1(11), 1110–1116 (2005)Google Scholar
  58. 58.
    A. Ismach, D. Kantorovich, E. Joselevich, Carbon nanotube graphoepitaxy: highly oriented growth by faceted nanosteps. J. Am. Chem. Soc. 127(33), 11554–11555 (2005)Google Scholar
  59. 59.
    H.I. Smith, D.C. Flanders, Oriented crystal growth on amorphous substrates using artificial surface-relief gratings. Appl. Phys. Lett. 32(6), 349–350 (1978)Google Scholar
  60. 60.
    R.A. Segalman, H. Yokoyama, E.J. Kramer, Graphoepitaxy of spherical domain block copolymer films. Adv. Mater. 13(15), 1152–1155 (2001)Google Scholar
  61. 61.
    B. Zhang, G. Hong, B. Peng, J. Zhang, W. Choi, J.M. Kim, J.-Y. Choi, Z. Liu, Grow single-walled carbon nanotubes cross-bar in one batch. J. Phys. Chem. C 113(14), 5341–5344 (2009)Google Scholar
  62. 62.
    N. Kumar, W. Curtis, J.-I. Hahm, Laterally aligned, multiwalled carbon nanotube growth using magnetospirillium magnetotacticum. Appl. Phys. Lett. 86(17), 173101 (2005)Google Scholar
  63. 63.
    K.-H. Lee, J.-M. Cho, W. Sigmund, Control of growth orientation for carbon nanotubes. Appl. Phys. Lett. 82(3), 448–450 (2003)Google Scholar
  64. 64.
    M.H. Kuang, Z.L. Wang, X.D. Bai, J.D. Guo, E.G. Wang, Catalytically active nickel 110 surfaces in growth of carbon tubular structures. Appl. Phys. Lett. 76(10), 1255–1257 (2000)Google Scholar
  65. 65.
    Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegal, P.N. Provencio, Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282, 1105–1107 (1998)Google Scholar
  66. 66.
    Y. Tu, Y. Lin, Z.F. Ren, Nanoelectrode arrays based on low site density aligned carbon nanotubes. Nano Lett. 3(1), 107–109 (2003)Google Scholar
  67. 67.
    Y. Wang, J. Rybczynski, D.Z. Wang, K. Kempa, Z.F. Ren, W.Z. Li, B. Kimball, Periodicity and alignment of large-scale carbon nanotubes arrays. Appl. Phys. Lett. 85(20), 4741–4743 (2004)Google Scholar
  68. 68.
    K.B.K. Teo, D.B. Hash, R.G. Lacerda, N.L. Rupesinghe, M.S. Bell, S.H. Dalal, D. Bose, T.R. Govindan, B.A. Cruden, M. Chhowalla, G.A.J. Amaratunga, M. Meyyappan, W.I. Milne, The significance of plasma heating in carbon nanotube and nanofiber growth. Nano Lett. 4(5), 921–926 (2004)Google Scholar
  69. 69.
    C.L. Cheung, A. Kurtz, H. Park, C.M. Lieber, Diameter-controlled synthesis of carbon nanotubes. J. Phys. Chem. B 106(10), 2429–2433 (2002)Google Scholar
  70. 70.
    H.C. Choi, S. Kundaria, D. Wang, A. Javey, Q. Wang, M. Rolandi, H. Dai, Efficient formation of iron nanoparticle catalysts on silicon oxide by hydroxylamine for carbon nanotube synthesis and electronics. Nano Lett. 3(2), 157–161 (2003)Google Scholar
  71. 71.
    Y. Li, W. Kim, Y. Zhang, M. Rolandi, D. Wang, H. Dai, Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes. J. Phys. Chem. B 105(46), 11424–11431 (2001)Google Scholar
  72. 72.
    C. Hinderling, Y. Keles, T. Stckli, H. Knapp, T. de los Arcos, P. Oelhafen, I. Korczagin, M. Hempenius, G. Vancso, R. Pugin, H. Heinzelmann, Organometallic block copolymers as catalyst precursors for templated carbon nanotube growth. Adv. Mater. 16(11), 876–879 (2004)Google Scholar
  73. 73.
    Z.P. Huang, J.W. Xu, Z.F. Ren, J.H. Wang, M.P. Siegal, P.N. Provencio, Growth of highly oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition. Appl. Phys. Lett. 73(26), 3845–3847 (1998)Google Scholar
  74. 74.
    Y. Tu, Z.P. Huang, D.Z. Wang, J.G. Wen, Z.F. Ren, Growth of aligned carbon nanotubes with controlled site density. Appl. Phys. Lett. 80(21), 4018–4020 (2002)Google Scholar
  75. 75.
    M. Chhowalla, K.B.K. Teo, C. Ducati, N.L. Rupesinghe, G.A.J. Amaratunga, A.C. Ferrari, D. Roy, J. Robertson, W.I. Milne, Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. J. Appl. Phys. 90(10), 5308–5317 (2001)Google Scholar
  76. 76.
    V.I. Merkulov, D.H. Lowndes, Y.Y. Wei, G. Eres, E. Voelkl, Patterned growth of individual and multiple vertically aligned carbon nanofibers. Appl. Phys. Lett. 76(24), 3555–3557 (2000)Google Scholar
  77. 77.
    M.P. Zach, R.M. Penner, Nanocrystalline nickel nanoparticles. Adv. Mater. 12(12), 878–883 (2000)Google Scholar
  78. 78.
    J.V. Zoval, R.M. Stiger, P.R. Biernacki, R.M. Penner, Electrochemical deposition of silver nanocrystallites on the atomically smooth graphite basal plane. J. Phys. Chem. 100(2), 837–844 (1996)Google Scholar
  79. 79.
    G. Sandmann, H. Dietz, W. Plieth, Preparation of silver nanoparticles on ito surfaces by a double-pulse method. J. Electroanal. Chem. 491(1–2), 78–86 (2000)Google Scholar
  80. 80.
    H. Liu, R.M. Penner, Size-selective electrodeposition of mesoscale metal particles in the uncoupled limit. J. Phys. Chem. B 104(39), 9131–9139 (2000)Google Scholar
  81. 81.
    J.V. Zoval, J. Lee, S. Gorer, R.M. Penner, Electrochemical preparation of platinum nanocrystallites with size selectivity on basal plane oriented graphite surfaces. J. Phys. Chem. B 102(7), 1166–1175 (1998)Google Scholar
  82. 82.
    S.H. Jo, Y. Tu, Z.P. Huang, D.L. Carnahan, D.Z. Wang, Z.F. Ren, Effect of length and spacing of vertically aligned carbon nanotubes on field emission properties. Appl. Phys. Lett. 82(20), 3520–3522 (2003)Google Scholar
  83. 83.
    K. Zhou, J.-Q. Huang, Q. Zhang, F. Wei, Multi-directional growth of aligned carbon nanotubes over catalyst film prepared by atomic layer deposition. Nanoscale Res. Lett. 5(10), 1555–1560 (2010)Google Scholar
  84. 84.
    T.A. El-Aguizy, J. hyun Jeong, Y.-B. Jeon, W. Z. Li, Z. F. Ren, S.-G. Kim, Transplanting carbon nanotubes. Appl. Phys. Lett. 85(24), 5995–5997 (2004)Google Scholar
  85. 85.
    K. Kempa, B. Kimball, J. Rybczynski, Z.P. Huang, P.F. Wu, D. Steeves, M. Sennett, M. Giersig, D.V.G.L.N. Rao, D.L. Carnahan, D.Z. Wang, J. Y. Lao, W. Z. Li, Z.F. Ren, Photonic crystals based on periodic arrays of aligned carbon nanotubes. Nano Lett. 3(1), 13–18 (2003)Google Scholar
  86. 86.
    J. Rybczynski, U. Ebels, M. Giersig, Large-scale, 2D arrays of magnetic nanoparticles. Colloid. Surface. A 219(1–3), 1–6 (2003)Google Scholar
  87. 87.
    J. Rybczynski, D. Banerjee, A. Kosiorek, M. Giersig, Z.F. Ren, Formation of super arrays of periodic nanoparticles and aligned zno nanorods: simulation and experiments. Nano Lett. 4(10), 2037–2040 (2004)Google Scholar
  88. 88.
    A. Kosiorek, W. Kandulski, P. Chudzinski, K. Kempa, M. Giersig, Shadow nanosphere lithography: simulation and experiment. Nano Lett. 4(7), 1359–1363 (2004)Google Scholar
  89. 89.
    J. Rybczynski, K. Kempa, Y. Wang, Z.F. Ren, J.B. Carlson, B.R. Kimball, G. Benham, Visible light diffraction studies on periodically aligned arrays of carbon nanotubes: Experimental and theoretical comparison. Appl. Phys. Lett. 88(20), 203122 (2006)Google Scholar
  90. 90.
    W. Hu, D. Gong, Z. Chen, L. Yuan, K. Saito, C.A. Grimes, P. Kichambare, Growth of well-aligned carbon nanotube arrays on silicon substrates using porous alumina film as a nanotemplate. Appl. Phys. Lett. 79(19), 3083–3085 (2001)Google Scholar
  91. 91.
    J.S. Suh, J.S. Lee, Highly ordered two-dimensional carbon nanotube arrays. Appl. Phys. Lett. 75(14), 2047–2049 (1999)Google Scholar
  92. 92.
    W.J. Yu, Y.S. Cho, G.S. Choi, D. Kim, Patterned carbon nanotube field emitter using the regular array of an anodic aluminium oxide template. Nanotechnology 16(5), S291–S295 (2005)Google Scholar
  93. 93.
    L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J.-M. Bonard, K. Kern, Scanning field emission from patterned carbon nanotube films. Appl. Phys. Lett. 76(15), 2071–2073 (2000)Google Scholar
  94. 94.
    X. Wang, C.J. Summers, Z.L. Wang, Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays. Nano Lett. 4(3), 423–426 (2004)Google Scholar
  95. 95.
    X.D. Wang, E. Graugnard, J.S. King, Z.L. Wang, C.J. Summers, Large-scale fabrication of ordered nanobowl arrays. Nano Lett. 4(11), 2223–2226 (2004)Google Scholar
  96. 96.
    K.J. Mysels, Surface tension of solutions of pure sodium dodecyl sulfate. Langmuir 2, 423–428 (July 1986)Google Scholar
  97. 97.
    M. Hilgendorff, M. Giersig, Assemblies of magnetic particles: synthesis and producton. in Nanoscale Materials, ed. by L.M. Liz-Marzán, P.V. Kamat (Kluwer Academic Publishers, Boston, 2003)Google Scholar
  98. 98.
    Z.F. Ren, Z.P. Huang, D.Z. Wang, J.G. Wen, J.W. Xu, J.H. Wang, L.E. Calvet, J. Chen, J.F. Klemic, M.A. Reed, Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot. Appl. Phys. Lett. 75(8), 1086–1088 (1999)Google Scholar
  99. 99.
    Y.Y. Wei, G. Eres, V.I. Merkulov, D.H. Lowndes, Effect of catalyst film thickness on carbon nanotube growth by selective area chemical vapor deposition. Appl. Phys. Lett. 78(10), 1394–1396 (2001)Google Scholar
  100. 100.
    K.B.K. Teo, M. Chhowalla, G.A.J. Amaratunga, W.I. Milne, D.G. Hasko, G. Pirio, P. Legagneux, F. Wyczisk, D. Pribat, Uniform patterned growth of carbon nanotubes without surface carbon. Appl. Phys. Lett. 79(10), 1534–1536 (2001)Google Scholar
  101. 101.
    J. Moser, R. Panepucci, Z.P. Huang, W.Z. Li, Z.F. Ren, A. Usheva, M.J. Naughton, Individual free-standing carbon nanofibers addressable on the 50 nm scale. J. Vac. Sci. Technol. B 21(3), 1004–1007 (2003)Google Scholar
  102. 102.
    H. Cong, L. Hong, R.S. Harake, T. Pan, CNT-based photopatternable nanocomposites with high electrical conductivity and optical transparency. J. Micromech. Microeng. 20(2), 025002 (2010)Google Scholar
  103. 103.
    D. Qin, Y.N. Xia, J.A. Rogers, R.J. Jackman, X.M. Zhao, G.M. Whitesides, Microfabrication, microstructures and microsystems. Top. Curr. Chem. 194, 1–20 (1998)Google Scholar
  104. 104.
    G. Cao, Nanostructures and Nanomaterials: Synthesis, Properties & Applications (Imperial College Press, London, 2004)Google Scholar
  105. 105.
    C.C. Davis, W.A. Atia, A. Güngor, D.L. Mazzoni, S. Pilevar, I.I. Smolyaninov, Scanning near-field optical microscopy and lithography with bare tapered optical fibers. Laser Phys. 7(1), 243–248 (1997)Google Scholar
  106. 106.
    M.K. Herndon, R.T. Collins, R.E. Hollinsworth, P.R. Larson, M.B. Johnson, Near-field scanning optical nanolithography using amorphous silicon photoresists. Appl. Phys. Lett. 74(1), 141–143 (1999)Google Scholar
  107. 107.
    T. Ito, S. Okazaki, Pushing the limits of lithography. Nature 406(6799), 1027–1031 (2000)Google Scholar
  108. 108.
    G. Simon, A.M. Haghiri-Gosnet, J. Bourneix, D. Decanini, Y. Chen, F. Rousseaux, H. Launios, B. Vidal, Sub-20 nm x-ray nanolithography using conventional mask technologies on monochromatized synchrotron radiation. J. Vac. Sci. Technol. B 15(6), 2489–2494 (1997)Google Scholar
  109. 109.
    T. Kitayama, K. Itoga, Y. Watanabe, S. Uzawa, Proposal for a 50 nm proximity x-ray lithography system and extension to 35 nm by resist material selection. J. Vac. Sci. Technol. B 18(6), 2950–2954 (2000)Google Scholar
  110. 110.
    C. Vieu, F. Carcenac, A. Pepin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, H. Lunois, Electron beam lithography: resolution limits and applications. Appl. Surf. Sci. 164(1–4), 111–117 (2000)Google Scholar
  111. 111.
    S. Yesin, D.G. Hasko, H. Ahmed, Fabrication of \({<}5\) nm width lines in poly(methylmethacrylate) resist using a water: isopropyl alcohol developer and ultrasonically-assisted development. Appl. Phys. Lett. 78(18), 2760 (2001)Google Scholar
  112. 112.
    H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, T. Tamamura, Highly ordered nanochannel-array architecture in anodic alumina. Appl. Phys. Lett. 71(19), 2770–2772 (1997)Google Scholar
  113. 113.
    Z. Chen, D. den Engelsen, P.K. Bachmann, V. van Elsbergen, I. Koehler, J. Merikhi, D.U. Wiechert, High emission current density microwave-plasma-grown carbon nanotube arrays by postdepositional radio-frequency oxygen plasma treatment. Appl. Phys. Lett. 87(24), 243104 (2005)Google Scholar
  114. 114.
    C.R. Martin, Nanomaterials: a membrane-based synthetic approach. Science 266(5193), 1961–1966 (1994)Google Scholar
  115. 115.
    J. Li, C. Papadopoulos, J.M. Xu, M. Moskovits, Highly-ordered carbon nanotube arrays for electronics applications. Appl. Phys. Lett. 75(3), 367–369 (1999)Google Scholar
  116. 116.
    J.S. Suh, K.S. Jeong, J.S. Lee, I. Han, Study of the field-screening effect of highly ordered carbon nanotube arrays. Appl. Phys. Lett. 80(13), 2392–2394 (2002)Google Scholar
  117. 117.
    F. Gao, Y. Yuan, K.F. Wang, X.Y. Chen, F. Chen, J.-M. Liu, Z.F. Ren, Preparation and photoabsorption characterization of \(\text{ BiFeO}_3\) nanowires. Appl. Phys. Lett. 89(10), 102506 (2006)Google Scholar
  118. 118.
    R.C. Furneaux, W.R. Rigby, A.P. Davidson, The formation of controlled-porosity membranes from anodically oxidized aluminium. Nature 337(6203), 147–149 (1989)Google Scholar
  119. 119.
    X. Chen, K. Cendrowski, J. Srenscek-Nazzal, M. Rūmmeli, R.J. Kalenczuk, H. Chen, P.K. Chu, E. Borowiak-Palen, Fabrication method of parallel mesoporous carbon nanotubes. Colloid. Surface. A 377(1–3), 150–155 (2011)Google Scholar
  120. 120.
    K.-H. Kim, E. Lefeuvre, M. Châtelet, D. Pribat, C.S. Cojocaru, Laterally organized carbon nanotube arrays based on hot-filament chemical vapor deposition. Thin Solid Films 519(14), 4598–4602 (2011)Google Scholar
  121. 121.
    R.D. Bennett, G.Y. Xiong, Z.F. Ren, R.E. Cohen, Using block copolymer micellar thin films as templates for the production of catalysts for carbon nanotube growth. Chem. Mater. 16(26), 5589–5595 (2004)Google Scholar
  122. 122.
    E. Mendoza, S. Henley, C. Poa, G. Chen, C. Giusca, A. Adikaari, J. Carey, S. Silva, Large area growth of carbon nanotube arrays for sensing platforms. Sens. Actuat. B Chem. 109(1), 75–80 (2005)Google Scholar
  123. 123.
    W. Chang, J. Kim, D. Choi, C. Han, Fabrication of nano-electrode arrays of free-standing carbon nanotubes on nano-patterned substrate by imprint method. Appl. Surf. Sci. 257(7), 3063–3068 (2011)Google Scholar
  124. 124.
    W. Chang, J. Kim, D. Choi, C. Han, Fabrication of free-standing carbon nanotube electrode arrays on a quartz wafer. Thin Solid Films 518(22), 6624–6629 (2010)Google Scholar
  125. 125.
    S. Talapatra, S. Kar, S.K. Pal, R. Vajtai, L. Ci, P. Victor, M.M. Shaijumon, S. Kaur, O. Nalamasu, M.P. Ajayan, Direct growth of aligned carbon nanotubes on bulk metals. Nat. Nanotechnol. 1(2), 112–116 (2006)Google Scholar
  126. 126.
    X.Q. Chen, T. Saito, H. Yamada, K. Matsushige, Aligning single-wall carbon nanotubes with an alternating-current electric field. Appl. Phys. Lett. 78(23), 3714–3716 (2001)Google Scholar
  127. 127.
    K. Yamamoto, S. Akita, Y. Nakayama, Orientation of carbon nanotubes using electrophoresis. Jpn. J. Appl. Phys. Part 2 35(7B), L917–L918 (1996)Google Scholar
  128. 128.
    K. Bubke, H. Gnewuch, M. Hempstead, J. Hammer, M.L.H. Green, Optical anisotropy of dispersed carbon nanotubes induced by an electric field. Appl. Phys. Lett. 71(14), 1906–1908 (1997)Google Scholar
  129. 129.
    J. Chung, K.-H. Lee, J. Lee, R.S. Ruoff, Toward large-scale integration of carbon nanotubes. Langmuir 20(8), 3011–3017 (2004)Google Scholar
  130. 130.
    S.M. Jung, H.Y. Jung, J.S. Suh, Horizontally aligned carbon nanotube field emitters fabricated on ito glass substrates. Carbon 46(14), 1973–1977 (2008)Google Scholar
  131. 131.
    S. Shekhar, P. Stokes, S.I. Khondaker, Ultrahigh density alignment of carbon nanotube arrays by dielectrophoresis. ACS Nano 5(3), 1739–1746 (2011)Google Scholar
  132. 132.
    B.K. Sarker, M.R. Islam, F. Alzubi, S.I. Khondaker, Fabrication of aligned carbon nanotube array electrodes for organic electronic devices. Mater. Express 1(1), 80–85 (2011)Google Scholar
  133. 133.
    C. Kocabas, M.A. Meitl, A. Gaur, M. Shim, J.A. Rogers, Aligned arrays of single-walled carbon nanotubes generated from random networks by orientationally selective laser ablation. Nano Lett. 4(12), 2421–2426 (2004)Google Scholar
  134. 134.
    J. Heremans, C.H. Olk, D.T. Morelli, Magnetic susceptibility of carbon structures. Phys. Rev. B 49(21), 15122–15125 (1994)Google Scholar
  135. 135.
    D.K. Yoon, S.R. Lee, Y.H. Kim, S.-M. Choi, H.-T. Jung, Large-area, highly aligned cylindrical perfluorinated supramolecular dendrimers using magnetic fields. Adv. Mater. 18(4), 509–513 (2006)Google Scholar
  136. 136.
    J.P. Lu, Novel magnetic properties of carbon nanotubes. Phys. Rev. Lett. 74(7), 1123–1126 (1995)Google Scholar
  137. 137.
    K. Kordás, T. Mustonen, G. Tóth, J. Vähäkangas, A. Uusimäki, H. Jantunen, A. Gupta, K.V. Rao, R. Vajtai, P.M. Ajayan, Magnetic-field induced efficient alignment of carbon nanotubes in aqueous solutions. Chem. Mater. 19(4), 787–791 (2007)Google Scholar
  138. 138.
    G. Korneva, H. Ye, Y. Gogotsi, D. Halverson, G. Friedman, J.-C. Bradley, K.G. Kornev, Carbon nanotubes loaded with magnetic particles. Nano Lett. 5(5), 879–884 (2005)Google Scholar
  139. 139.
    C. Gao, W. Li, H. Morimoto, Y. Nagaoka, T. Maekawa, Magnetic carbon nanotubes: synthesis by electrostatic self-assembly approach and application in biomanipulations. J. Phys. Chem. B 110(14), 7213–7220 (2006)Google Scholar
  140. 140.
    S.C. Youn, D.-H. Jung, Y.K. Ko, Y.W. Jin, J.M. Kim, H.-T. Jung, Vertical alignment of carbon nanotubes using the magneto-evaporation method. J. Am. Chem. Soc. 131(2), 742–748 (2009)Google Scholar
  141. 141.
    M.A. Correa-Duarte, M. Grzelczak, V. Salgueiriño Maceira, M. Giersig, L.M. Liz-Marzán, M. Farle, K. Sierazdki, R. Diaz, Alignment of carbon nanotubes under low magnetic fields through attachment of magnetic nanoparticles. J. Phys. Chem. B 109(41), 19060–19063 (2005)Google Scholar
  142. 142.
    J.S. Shim, Y.-H. Yun, W. Cho, V. Shanov, M.J. Schulz, C.H. Ahn, Self-aligned nanogaps on multilayer electrodes for fluidic and magnetic assembly of carbon nanotubes. Langmuir 26(14), 11642–11647 (2010)Google Scholar
  143. 143.
    M.F. Lin, K.W.K. Shung, Magnetization of graphene tubules. Phys. Rev. B 52(11), 8423–8438 (1995)Google Scholar
  144. 144.
    D.A. Walters, M.J. Casavant, X.C. Qin, C.B. Huffman, P.J. Boul, L.M. Ericson, E.H. Haroz, M.J. O’Connell, K. Smith, D.T. Colbert, R.E. Smalley, In-plane-aligned membranes of carbon nanotubes. Chem. Phys. Lett. 338(1), 14–20 (2001)Google Scholar
  145. 145.
    X.L. Xie, Y.W. Mai, X.P. Zhou, Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mat. Sci. Eng. R Rep. 49(4), 89–112 (2005)Google Scholar
  146. 146.
    T.J. Park, J.P. Park, S.J. Lee, D.-H. Jung, Y.K. Ko, H.-T. Jung, S.Y. Lee, Alignment of SWNTs by protein-ligand interaction of functionalized magnetic particles under low magnetic fields. J. Nanosci. Nanotechnol. 11(5), 4540–4545 (2011)Google Scholar
  147. 147.
    J.E. Fischer, W. Zhou, J. Vavro, M.C. Llaguno, C. Guthy, R. Haggenmueller, M.J. Casavant, D.E. Walters, R.E. Smalley, Magnetically aligned single wall carbon nanotube films: preferred orientation and anisotropic transport properties. J. Appl. Phys. 93(4), 2157–2163 (2003)Google Scholar
  148. 148.
    B.W. Smith, Z. Benes, D.E. Luzzi, J.E. Fischer, D.A. Walters, M.J. Casavant, J. Schmidt, R.E. Smalley, Structural anisotropy of magnetically aligned single wall carbon nanotube films. Appl. Phys. Lett. 77(5), 663–665 (2000)Google Scholar
  149. 149.
    J. Hone, M.C. Llaguno, N.M. Nemes, A.T. Johnson, J.E. Fischer, D.A. Walters, M.J. Casavant, J. Schmidt, R.E. Smalley, Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films. Appl. Phys. Lett. 77(5), 666–668 (2000)Google Scholar
  150. 150.
    W.Z. Li, J.G. Wen, M. Sennett, Z.F. Ren, Clean double-walled carbon nanotubes synthesized by CVD. Chem. Phys. Lett. 368(3–4), 299–306 (2003)Google Scholar
  151. 151.
    P.M. Ajayan, O. Stephan, C. Colliex, D. Trauth, Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science 265(5176), 1212–1214 (1994)Google Scholar
  152. 152.
    L. Lu, W. Chen, Large-scale aligned carbon nanotubes from their purified, highly concentrated suspension. ACS Nano 4(2), 1042–1048 (2010)Google Scholar
  153. 153.
    L. Jin, C. Bower, O. Zhou, Alignment of carbon nanotubes in a polymer matrix by mechanical stretching. Appl. Phys. Lett. 73(9), 1197–1199 (1998)Google Scholar
  154. 154.
    M. Ichida, S. Mizuno, H. Kataura, Y. Achiba, A. Nakamura, Anisotropic optical properties of mechanically aligned single-walled carbon nanotubes in polymer. Appl. Phys. A Mater. 78(8), 1117–1120 (2004)Google Scholar
  155. 155.
    Y. Kim, N. Minami, S. Kazaoui, Highly polarized absorption and photoluminescence of stretch-aligned single-wall carbon nanotubes dispersed in gelatin films. Appl. Phys. Lett. 86(7), 073103 (2005)Google Scholar
  156. 156.
    X. Yuan, A.F.T. Mak, K.W. Kwok, B.K.O. Yung, K. Yao, Characterization of poly(L-lactic acid) fibers produced by melt spinning. J. Appl. Polym. Sci. 81(1), 251–260 (2001)Google Scholar
  157. 157.
    B. Vigolo, A. Pénicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier, P. Poulin, Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 290(5495), 1331–1334 (2000)Google Scholar
  158. 158.
    H.W. Zhu, C.L. Xu, D.H. Wu, B.Q. Wei, R. Vajtai, P.M. Ajayan, Direct synthesis of long single-walled carbon nanotube strands. Science 296(5569), 884–886 (2002)Google Scholar
  159. 159.
    P. Poulin, B. Vigolo, P. Launois, Films and fibers of oriented single wall nanotubes. Carbon 40(10), 1741–1749 (2002)Google Scholar
  160. 160.
    F. Ko, Y. Gogotsi, A. Ali, N. Naguib, H. Ye, G. Yang, C. Li, P. Willis, Electrospinning of continuous carbon nanotube-filled nanofiber yarns. Adv. Mater. 15(14), 1161–1165 (2003)Google Scholar
  161. 161.
    Y.-L. Li, I.A. Kinloch, A.H. Windle, Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 304(5668), 276–278 (2004)Google Scholar
  162. 162.
    M. Zhang, S. Fang, A.A. Zakhidov, S.B. Lee, A.E. Aliev, C.D. Williams, K.R. Atkinson, R.H. Baughman, Strong, transparent, multifunctional, carbon nanotube sheets. Science 309(5738), 1215–1219 (2005)Google Scholar
  163. 163.
    X. Zhang, Q. Li, T.G. Holesinger, P.N. Arendt, J. Huang, P.D. Kirven, T.G. Clapp, R.F. DePaula, X. Liao, Y. Zhao, L. Zheng, D. Peterson, Y. Zhu, Ultrastrong, stiff, and lightweight carbon-nanotube fibers. Adv. Mater. 19(23), 4198–4201 (2007)Google Scholar
  164. 164.
    M.B. Bazbouz, G.K. Stylios, Novel mechanism for spinning continuous twisted composite nanofiber yarns. Eur. Polym. J. 44(1), 1–12 (2008)Google Scholar
  165. 165.
    N. Behabtu, M.J. Green, M. Pasquali, Carbon nanotube-based neat fibers. Nano Today 3(5–6), 24–34 (2008) and references thereinGoogle Scholar
  166. 166.
    K. Koziol, J. Vilatela, A. Moisala, M. Motta, P. Cunniff, M. Sennett, A. Windle, High-performance carbon nanotube fiber. Science 318(5858), 1892–1895 (2007)Google Scholar
  167. 167.
    L.M. Ericson, H. Fan, H. Peng, V.A. Davis, W. Zhou, J. Sulpizio, Y. Wang, R. Booker, J. Vavro, C. Guthy, A.N.G. Parra-Vasquez, M.J. Kim, S. Ramesh, R.K. Saini, C. Kittrell, G. Lavin, H. Schmidt, W.W. Adams, W.E. Billups, M. Pasquali, W.-F. Hwang, R.H. Hauge, J.E. Fischer, R.E. Smalley, Macroscopic, neat, single-walled carbon nanotube fibers. Science 305(5689), 1447–1450 (2004)Google Scholar
  168. 168.
    M. Zhang, K.R. Atkinson, R.H. Baughman, Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 306(5700), 1358–1361 (2004)Google Scholar
  169. 169.
    K. Jiang, Q. Li, S. Fan, Nanotechnology: spinning continuous carbon nanotube yarns. Nature 419(6909), 801–801 (2002)Google Scholar
  170. 170.
    K. Liu, Y. Sun, X. Lin, R. Zhou, J. Wang, S. Fan, K. Jiang, Scratch-resistant, highly conductive, and high-strength carbon nanotube-based composite yarns. ACS Nano 4(10), 5827–5834 (2010)Google Scholar
  171. 171.
    K. Liu, Y. Sun, R. Zhou, H. Zhu, J. Wang, L. Liu, S. Fan, K. Jiang, Carbon nanotube yarns with high tensile strength made by a twisting and shrinking method. Nanotechnology 21(4), 045708 (2010)Google Scholar
  172. 172.
    M.D. Lima, S. Fang, X. Lepró, C. Lewis, R. Ovalle-Robles, J. Carretero-González, E. Castillo-Martínez, M.E. Kozlov, J. Oh, N. Rawat, C.S. Haines, M.H. Haque, V. Aare, S. Stoughton, A.A. Zakhidov, R.H. Baughman, Biscrolling nanotube sheets and functional guests into yarns. Science 331(6013), 51–55 (2011)Google Scholar
  173. 173.
    W. Li, C. Jayasinghe, V. Shanov, M. Schulz, Spinning carbon nanotube nanothread under a scanning electron microscope. Materials 4(9), 1519–1527 (2011)Google Scholar
  174. 174.
    W. Liu, X. Zhang, G. Xu, P.D. Bradford, X. Wang, H. Zhao, Y. Zhang, Q. Jia, F.-G. Yuan, Q. Li, Y. Qiu, Y. Zhu, Producing superior composites by winding carbon nanotubes onto a mandrel under a poly(vinyl alcohol) spray. Carbon 49(14), 4786–4791 (2011)Google Scholar
  175. 175.
    K. Jiang, J. Wang, Q. Li, L. Liu, C. Liu, S. Fan, Superaligned carbon nanotube arrays, films, and yarns: a road to applications. Adv. Mater. 23(9), 1154–1161 (2011)Google Scholar
  176. 176.
    L. Hu, D.S. Hecht, G. Gruüner, Carbon nanotube thin films: fabrication, properties, and applications. Chem. Rev. 110, 5790–5844 (2010)Google Scholar
  177. 177.
    W.A. de Heer, W.S. Bacsa, A. Châtelain, T. Gerfin, R. Humphrey-Baker, L. Forro, D. Ugarte, Aligned carbon nanotube films: production and optical and electronic properties. Science 268(5212), 845–847 (1995)Google Scholar
  178. 178.
    Y.H. Yan, S. Li, L.Q. Chen, M.B. Chan-Park, Q. Zhang, Large-scale submicron horizontally aligned single-walled carbon nanotube surface arrays on various substrates produced by a fluidic assembly method. Nanotechnology 17(22), 5696 (2006)Google Scholar
  179. 179.
    Y. Huang, X. Duan, Q. Wei, C.M. Lieber, Directed assembly of one-dimensional nanostructures into functional networks. Science 291(5504), 630–633 (2001)Google Scholar
  180. 180.
    S.J. Oh, Y. Cheng, J. Zhang, H. Shimoda, O. Zhou, Room-temperature fabrication of high-resolution carbon nanotube field-emission cathodes by self-assembly. Appl. Phys. Lett. 82(15), 2521–2523 (2003)Google Scholar
  181. 181.
    S.G. Rao, L. Huang, W. Setyawan, S. Hong, Nanotube electronics: large-scale assembly of carbon nanotubes. Nature 425(6953), 36–37 (2003)Google Scholar
  182. 182.
    K.M. Seemann, J. Ebbecke, A. Wixforth, Alignment of carbon nanotubes on pre-structured silicon by surface acoustic waves. Nanotechnology 17(17), 4529 (2006)Google Scholar
  183. 183.
    Y. Wang, D. Maspoch, S. Zou, G.C. Schatz, R.E. Smalley, C.A. Mirkin, Controlling the shape, orientation, and linkage of carbon nanotube features with nano affinity templates. Proc. Natl. Acad. Sci. U.S.A. 103(7), 2026–2031 (2006)Google Scholar
  184. 184.
    P. Diao, Z. Liu, Vertically aligned single-walled carbon nanotubes by chemical assembly—methodology, properties, and applications. Adv. Mater. 22, 1430–1449 (2010)Google Scholar
  185. 185.
    J. Qu, Z. Zhao, X. Wang, J. Qiu, Tailoring of three-dimensional carbon nanotube architectures by coupling capillarity-induced assembly with multiple CVD growth. J. Mater. Chem. 21(16), 5967–5971 (2011)Google Scholar
  186. 186.
    L. Dai, A. Patil, X. Gong, Z. Guo, L. Liu, Y. Liu, D. Zhu, Aligned nanotubes. Chem. Phys. Chem. 4, 1150–1169 (2003)Google Scholar
  187. 187.
    Y.H. Yan, M.B. Chan-Park, Q. Zhang, Advances in carbon-nanotube assembly. Small 3(1), 24–42 (2007)Google Scholar
  188. 188.
    L. Huang, Z. Jia, S. O’Brien, Orientated assembly of single-walled carbon nanotubes and applications. J. Mater. Chem. 17, 3863–3874 (2007)Google Scholar
  189. 189.
    H. Chen, A. Roy, J.-B. Baek, L. Zhu, J. Qu, L. Dai, Controlled growth and modification of vertically-aligned carbon nanotubes for multifunctional applications. Mat. Sci. Eng. R Rep. 70(3–6), 63–91 (2010)Google Scholar
  190. 190.
    C.-M. Seah, S.-P. Chai, A.R. Mohamed, Synthesis of aligned carbon nanotubes. Carbon 49(14), 4613–4635 (2011)Google Scholar
  191. 191.
    S. Neupane, W. Li, Carbon nanotube arrays: synthesis, properties and applications. in Three-Dimensional Nanoarchitectures: Designing Next-Generation Device, ed. by W. Zhou, Z.L. Wang (Springer, London, 2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of PhysicsBoston CollegeChestnut HillUSA
  2. 2.Department of PhysicsBoston CollegeChestnut HillUSA
  3. 3.Institute for Advanced Materials, Academy of Advanced OptoelectronicsSouth China Normal UniversityGuangzhouPeople’s Republic of China

Personalised recommendations