Physics of Direct Current Plasma-Enhanced Chemical Vapor Deposition

  • Zhifeng Ren
  • Yucheng Lan
  • Yang Wang
Part of the NanoScience and Technology book series (NANO)


Among various chemical vapor deposition methods, direct-current plasma-enhanced chemical vapor deposition is one of the most important methods to align carbon nanotubes. Highly ordered carbon nanotube arrays can be in situ grown by the method, widely being used in various chemical and biosensors. In this chapter, we introduce the equipment, physics, and experimental parameters of direct-current plasma-enhanced chemical vapor deposition to in situ grow carbon nanotube arrays.


Catalyst Particle Plasma Etching Gate Valve Stage Tube Current Density Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A.V. Melechko, V.I. Merkulov, T.E. McKnight, M.A. Guillorn, K.L. Klein, D.H. Lowndes, M.L. Simpson, Vertically aligned carbon nanofibers and related structures: controlled synthesis and directed assembly. J. Appl. Phys. 97(4), 041301/1–041301/39 (2005)Google Scholar
  2. 2.
    M. Meyyappan, L. Delzeit, A. Cassell, D. Hash, Carbon nanotube growth by PECVD: a review. Plasma Sources Sci. Technol. 12(2), 205–216 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    Y. Wang, Nanophotonics of vertically aligned carbon nanotubes: two-dimensional photonic crystals and optical dipole antenna. Ph.D. thesis, Boston College, 2006Google Scholar
  4. 4.
    Persistence of Vision Pty. Ltd, Persistence of Vision Raytracer (Version 3.6) (2004)Google Scholar
  5. 5.
    Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegal, P.N. Provencio, Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282, 1105–1107 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    Y. Wang, S.H. Jo, S. Chen, D.Z. Wang, Z.F. Ren, Aligned carbon nanofibres by a low-energy dark discharge for field emission and optoelectronics. Nanotechnology 17(2), 501–505 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    S. Hofmann, G. Csányi, A.C. Ferrari, M.C. Payne, J. Robertson, Surface diffusion: the low activation energy path for nanotube growth. Phys. Rev. Lett. 95(3), 036101/1–036101/4 (2005)Google Scholar
  8. 8.
    S. Hofmann, C. Ducati, J. Robertson, B. Kleinsorge, Low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 83(1), 135–137 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    Z. Yu, S. Li, P.J. Burke, Synthesis of aligned arrays of millimeter long, straight single-walled carbon nanotubes. Chem. Mater. 16(18), 3414–3416 (2004)CrossRefGoogle Scholar
  10. 10.
    E.J. Bae, Y.-S. Min, D. Kang, J.-H. Ko, W. Park, Low-temperature growth of single-walled carbon nanotubes by plasma enhanced chemical vapor deposition. Chem. Mater. 17(20), 5141–5145 (2005)CrossRefGoogle Scholar
  11. 11.
    K.B.K. Teo, D.B. Hash, R.G. Lacerda, N.L. Rupesinghe, M.S. Bell, S.H. Dalal, D. Bose, T.R. Govindan, B.A. Cruden, M. Chhowalla, G.A.J. Amaratunga, M. Meyyappan, W.I. Milne, The significance of plasma heating in carbon nanotube and nanofiber growth. Nano Lett. 4(5), 921–926 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    Z.P. Huang, J.W. Xu, Z.F. Ren, J.H. Wang, M.P. Siegal, P.N. Provencio, Growth of highly oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition. Appl. Phys. Lett. 73(26), 3845–3847 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    X. Wang, K. Kempa, Z.F. Ren, B. Kimball, Rapid photon flux switching in two-dimensional photonic crystals. Appl. Phys. Lett. 84(11), 1817–1819 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    J.H. Choi, T.Y. Lee, S.H. Choi, J.-H. Han, J.-B. Yoo, C.-Y. Park, T. Jung, S. Yu, W. Yi, I.T. Han, J.M. Kim, Density control of carbon nanotubes using \(\text{ NH}_3\) plasma treatment of Ni catalyst layer. Thin Solid Films 435(1–2), 318–323 (2003)Google Scholar
  15. 15.
    S.H. Lim, K.C. Park, J.H. Moon, H.S. Yoon, D. Pribat, Y. Bonnassieux, J. Jang, Controlled density of vertically aligned carbon nanotubes in a triode plasma chemical vapor deposition system. Thin Solid Films 515(4), 1380–1384 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    J.H. Choi, T.Y. Lee, S.H. Choi, J. Han, J. Yoo, C. Park, T. Jung, S.G. Yu, W. Yi, I. Han, J.M. Kim, Control of carbon nanotubes density through ni nanoparticle formation using thermal and \(\text{ NH}_3\) plasma treatment. Diamond Relat. Mater. 12(3–7), 794–798 (2003)Google Scholar
  17. 17.
    J.R. Roth, Industrial Plasma Engineering (Institute of Physics Publishing, Bristol, 1995), Chap. 8–9Google Scholar
  18. 18.
    J. Fowlkes, A. Melechko, K. Klein, P. Rack, D. Smith, D. Hensley, M. Doktycz, M. Simpson, Control of catalyst particle crystallographic orientation in vertically aligned carbon nanofiber synthesis. Carbon 44(8), 1503–1510 (2006)CrossRefGoogle Scholar
  19. 19.
    F. Silly, M.R. Castell, Fe nanocrystal growth on \(\text{ SrTiO}_3\) (001). Appl. Phys. Lett. 87(6), 063106 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    H. Zhou, D. Kumar, A. Kvit, A. Tiwari, J. Narayan, Formation of self-assembled epitaxial nickel nanostructures. J. Appl. Phys. 94(8), 4841–4846 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    M.W. Geis, D.C. Flanders, H.I. Smith, Crystallographic orientation of silicon on an amorphous substrate using an artificial surface-relief grating and laser crystallization. Appl. Phys. Lett. 35(1), 71–74 (1979)ADSCrossRefGoogle Scholar
  22. 22.
    A.L. Giermann, C.V. Thompson, Solid-state dewetting for ordered arrays of crystallographically oriented metal particles. Appl. Phys. Lett. 86(12), 121903 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    Y.-J. Oh, C.A. Ross, Y.S. Jung, Y. Wang, C.V. Thompson, Cobalt nanoparticle arrays made by templated solid-state dewetting. Small 5(7), 860–865 (2009)CrossRefGoogle Scholar
  24. 24.
    T.E. McKnight, A.V. Melechko, D.W. Austin, T. Sims, M.A. Guillorn, M.L. Simpson, Microarrays of vertically-aligned carbon nanofiber electrodes in an open fluidic channel. J. Phys. Chem. B 108(22), 7115–7125 (2004)CrossRefGoogle Scholar
  25. 25.
    S. Hong, Y.-H. Shin, J. Ihm, Crystal shape of a nickel particle related to carbon nanotube growth. Jpn. J. Appl. Phys. 41(Part 1, 10), 6142–6144 (2002)Google Scholar
  26. 26.
    S. Reich, L. Li, J. Robertson, Control the chirality of carbon nanotubes by epitaxial growth. Chem. Phys. Lett. 421(4–6), 469–472 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    S. Reich, L. Li, J. Robertson, Structure and formation energy of carbon nanotube caps. Phys. Rev. B 72(16), 165423/1–165423/8 (2005)Google Scholar
  28. 28.
    J.F. AuBuchon, L. Chen, S. Jin, Control of carbon capping for regrowth of aligned carbon nanotubes. J. Phys. Chem. B 109(13), 6044–6048 (2005)CrossRefGoogle Scholar
  29. 29.
    J.F. AuBuchon, L. Chen, C. Daraio, S. Jin, Multibranching carbon nanotubes via self-seeded catalysts. Nano Lett. 6(2), 324–328 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    H. Wang, Z.F. Ren, The evolution of carbon nanotubes during their growth by plasma enhanced chemical vapor deposition. Nanotechnology 22(40), 405601 (2011)CrossRefGoogle Scholar
  31. 31.
    Z. Huang, D. Wang, J. Wen, M. Sennett, H. Gibson, Z. Ren, Effect of nickel, iron and cobalt on growth of aligned carbon nanotubes. Appl. Phys. A 74(3), 387–391 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    M. Chhowalla, K.B.K. Teo, C. Ducati, N.L. Rupesinghe, G.A.J. Amaratunga, A.C. Ferrari, D. Roy, J. Robertson, W.I. Milne, Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. J. Appl. Phys. 90(10), 5308–5317 (2001)ADSCrossRefGoogle Scholar
  33. 33.
    A. Gohier, T.M. Minea, M.A. Djouadi, A. Granier, Impact of the etching gas on vertically oriented single wall and few walled carbon nanotubes by plasma enhanced chemical vapor deposition. J. Appl. Phys. 101(5), 054317 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    V.I. Merkulov, A.V. Melechko, M.A. Guillorn, D.H. Lowndes, M.L. Simpson, Alignment mechanism of carbon nanofibers produced by plasma-enhanced chemical-vapor deposition. Appl. Phys. Lett. 79(18), 2970–2972 (2001)ADSCrossRefGoogle Scholar
  35. 35.
    A.V. Melechko, V.I. Merkulov, D.H. Lowndes, M.A. Guillorn, M.L. Simpson, Transition between ‘base’ and ‘tip’ carbon nanofiber growth modes. Chem. Phys. Lett. 356(5–6), 527–533 (2002)ADSCrossRefGoogle Scholar
  36. 36.
    Y. Wang, J. Rybczynski, D.Z. Wang, K. Kempa, Z.F. Ren, W.Z. Li, B. Kimball, Periodicity and alignment of large-scale carbon nanotubes arrays. Appl. Phys. Lett. 85(20), 4741–4743 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    C. Zhang, S. Pisana, C. Wirth, A. Parvez, C. Ducati, S. Hofmann, J. Robertson, Growth of aligned millimeter-long carbon nanotube by chemical vapor deposition. Diam. Relat. Mater. 17(7–10), 1447–1451 (2008)Google Scholar
  38. 38.
    K.B.K. Teo, M. Chhowalla, G.A.J. Amaratunga, W.I. Milne, G. Pirio, P. Legagneux, F. Wyczisk, J. Olivier, D. Pribat, Characterization of plasma-enhanced chemical vapor deposition carbon nanotubes by Auger electron spectroscopy. J. Vac. Sci. Technol. B 20(1), 116–121 (2002)CrossRefGoogle Scholar
  39. 39.
    S.H. Jo, Y. Tu, Z.P. Huang, D.L. Carnahan, J.Y. Huang, D.Z. Wang, Z.F. Ren, Correlation of field emission and surface microstructure of vertically aligned carbon nanotubes. Appl. Phys. Lett. 84(3), 413–415 (2004)ADSCrossRefGoogle Scholar
  40. 40.
    L. Qu, L. Dai, M. Stone, Z. Xia, Z.L. Wang, Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off. Science 322(5899), 238–242 (2008)ADSCrossRefGoogle Scholar
  41. 41.
    V.I. Merkulov, D.H. Lowndes, Y.Y. Wei, G. Eres, E. Voelkl, Patterned growth of individual and multiple vertically aligned carbon nanofibers. Appl. Phys. Lett. 76(24), 3555–3557 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of PhysicsBoston CollegeChestnut HillUSA
  2. 2.Department of PhysicsBoston CollegeChestnut HillUSA
  3. 3.Institute for Advanced Materials, Academy of Advanced OptoelectronicsSouth China Normal UniversityGuangzhouPeople’s Republic of China

Personalised recommendations