Advertisement

Chemical Vapor Deposition of Carbon Nanotubes

  • Zhifeng Ren
  • Yucheng Lan
  • Yang Wang
Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

Chemical vapor deposition is a popular industrial method to grow carbon nanotubes because of the mass production at low cost. Such method is also a very important technique to in situ align carbon nanotubes. In this chapter, we introduce various chemical vapor deposition methods, including thermal chemical vapor deposition and plasma-enhanced chemical vapor deposition, as well as the mechanism of growth and alignment.

Keywords

Chemical Vapor Deposition Chemical Vapor Deposition Process Thermal Chemical Vapor Deposition Catalytic Nanoparticles Direct Current Discharge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao, G. Wang, Large-scale synthesis of aligned carbon nanotubes. Science 274(5293), 1701–1703 (1996)ADSCrossRefGoogle Scholar
  2. 2.
    Z.W. Pan, S.S. Xie, B.H. Chang, C.Y. Wang, L. Lu, W. Liu, W.Y. Zhou, W.Z. Li, L.X. Qian, Very long carbon nanotubes. Nature 394(6694), 631–632 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    M. Terrones, N. Grobert, J. Olivares, J.P. Zhang, H. Terrones, K. Kordatos, W.K. Hsu, J.P. Hare, P.D. Townsend, K. Prassides, A.K. Cheetham, H.W. Kroto, D.R.M. Walton, Controlled production of aligned-nanotube bundles. Nature 388(6637), 52–55 (1997)ADSCrossRefGoogle Scholar
  4. 4.
    S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H. Dai, Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283(5401), 512–514 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegal, P.N. Provencio, Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282, 1105–1107 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    Y.C. Choi, Y.M. Shin, Y.H. Lee, B.S. Lee, G.-S. Park, W.B. Choi, N.S. Lee, J.M. Kim, Controlling the diameter, growth rate, and density of vertically aligned carbon nanotubes synthesized by microwave plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 76(17), 2367–2369 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    C. Bower, W. Zhu, S. Jin, O. Zhou, Plasma-induced alignment of carbon nanotubes. Appl. Phys. Lett. 77(6), 830–832 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    C. Bower, O. Zhou, W. Zhu, D.J. Werder, S. Jin, Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition. Appl. Phys. Lett. 77(17), 2767–2769 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    B.J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Gavalas, L.G. Bachas, Aligned multiwalled carbon nanotube membranes. Science 303(5654), 62–65 (2004)Google Scholar
  10. 10.
    L. Ge, S. Sethi, L. Ci, P.M. Ajayan, A. Dhinojwala, Carbon nanotube-based synthetic gecko tapes. Proc. Natl. Acad. Sci. USA 104(26), 10792–10795 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D.N. Futaba, M. Yumura, K. Hata, A black body absorber from vertically aligned single-walled carbon nanotubes. Proc. Natl. Acad. Sci. USA 106(15), 6044–6047 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    J.H. Chen, W.Z. Li, D.Z. Wang, S.X. Yang, J.G. Wen, Z.F. Ren, Electrochemical characterization of carbon nanotubes as electrode in electrochemical double-layer capacitors. Carbon 40( 8), 1193–1197 (2002)Google Scholar
  13. 13.
    R.D. Bennett, G.Y. Xiong, Z.F. Ren, R.E. Cohen, Using block copolymer micellar thin films as templates for the production of catalysts for carbon nanotube growth. Chem. Mater. 16(26), 5589–5595 (2004)CrossRefGoogle Scholar
  14. 14.
    S.H. Jo, J.Y. Huang, S. Chen, G.Y. Xiong, D.Z. Wang, Z.F. Ren, Field emission of carbon nanotubes grown on carbon cloth. J. Vac. Sci. Technol. B 23(6), 2363–2368 (2005)CrossRefGoogle Scholar
  15. 15.
    C.J. Lee, J.H. Park, J. Park, Synthesis of bamboo-shaped multiwalled carbon nanotubes using thermal chemical vapor deposition. Chem. Phys. Lett. 323(5–6), 560–565 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    M. Zhang, S. Fang, A.A. Zakhidov, S.B. Lee, A.E. Aliev, C.D. Williams, K.R. Atkinson, R.H. Baughman, Strong, transparent, multifunctional, carbon nanotube sheets. Science 309(5738), 1215–1219 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    G. Zhang, D. Mann, L. Zhang, A. Javey, Y. Li, E. Yenilmez, Q. Wang, J.P. McVittie, Y. Nishi, J. Gibbons, H. Dai, Ultra-high-yield growth of vertical single-walled carbon nanotubes: hidden roles of hydrogen and oxygen. Proc. Nat. Acad. Sci. USA 102(45), 16141–16145 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    G.-Y. Xiong, D. Wang, Z. Ren, Aligned millimeter-long carbon nanotube arrays grown on single crystal magnesia. Carbon 44(5), 969–973 (2006)CrossRefGoogle Scholar
  19. 19.
    K. Hata, D.N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima, Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306(5700), 1362–1364 (2004)Google Scholar
  20. 20.
    G.Y. Xiong, Y. Suda, D.Z. Wang, J.Y. Huang, Z.F. Ren, Effect of temperature, pressure, and gas ratio of methane to hydrogen on the synthesis of double-walled carbon nanotubes by chemical vapour deposition. Nanotechnology 16(4), 532–535 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    K. Hasegawa, S. Noda, Moderating carbon supply and suppressing ostwald ripening of catalyst particles to produce 4.5-mm-tall single-walled carbon nanotube forests. Carbon 49(13), 4497–4504 (2011)CrossRefGoogle Scholar
  22. 22.
    T. Sugai, T. Okazaki, H. Yoshida, H. Shinohara, Syntheses of single- and double-wall carbon nanotubes by the HTPAD and HFCVD methods. New J. Phys. 6, 21 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    T.B. Massalski, H. Okamoto (eds.), Binary Alloy Phase Diagrams (ASM International, Materials Park, 1996)Google Scholar
  24. 24.
    H. Ago, T. Komatsu, S. Ohshima, Y. Kuriki, M. Yumura, Dispersion of metal nanoparticles for aligned carbon nanotube arrays. Appl. Phys. Lett. 77(1), 79–81 (2000)ADSCrossRefGoogle Scholar
  25. 25.
    Y. Li, W. Kim, Y. Zhang, M. Rolandi, D. Wang, H. Dai, Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes. J. Phys. Chem. B 105(46), 11424–11431 (2001)CrossRefGoogle Scholar
  26. 26.
    E.T. Thostenson, W.Z. Li, D.Z. Wang, Z.F. Ren, T.W. Chou, Carbon nanotube/carbon fiber hybrid multiscale composites. J. Appl. Phys. 91(9), 6034–6037 (2002)ADSCrossRefGoogle Scholar
  27. 27.
    A.V. Melechko, V.I. Merkulov, T.E. McKnight, M.A. Guillorn, K.L. Klein, D.H. Lowndes, M.L. Simpson, Vertically aligned carbon nanofibers and related structures: controlled synthesis and directed assembly. J. Appl. Phys. 97(4), 041301/1–041301/39 (2005)Google Scholar
  28. 28.
    R. Baker, Catalytic growth of carbon filaments. Carbon 27(3), 315–323 (1989)Google Scholar
  29. 29.
    M. Endo, K. Takeuchi, K. Kobori, K. Takahashi, H.W. Kroto, A. Sarkar, Pyrolytic carbon nanotubes from vapor-grown carbon fibers. Carbon 33(7), 873–881 (1995)Google Scholar
  30. 30.
    J.-C. Charlier, A. De Vita, X. Blase, R. Car, Microscopic growth mechanisms for carbon nanotubes. Science 275(5300), 647–649 (1997)CrossRefGoogle Scholar
  31. 31.
    M. Yudasaka, R. Kikuchi, Y. Ohki, E. Ota, S. Yoshimura, Behavior of Ni in carbon nanotube nucleation. Appl. Phys. Lett. 70(14), 1817–1818 (1997)ADSCrossRefGoogle Scholar
  32. 32.
    J.C. Charlier, S. Iijima, Growth Mechanisms of Carbon Nanotubes, in Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, ed by. M.S. Dresselhaus, G. Dresselhaus, P. Avouris. Topics in Applied Physics, vol 80 (Springer, Berlin, 2001), pp. 55–81Google Scholar
  33. 33.
    T.W. Ebbesen (ed.), Carbon Nanotubes: Preparation and Properties (Chemical Rubber, Boca Raton, 1997)Google Scholar
  34. 34.
    H. Yoshida, S. Takeda, T. Uchiyama, H. Kohno, Y. Homma, Atomic-scale in-situ observation of carbon nanotube growth from solid state iron carbide nanoparticles. Nano Lett. 8(7), 2082–2086 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    S. Helveg, C. López-Cartes, J. Sehested, P.L. Hansen, B.S. Clausen, J.R. Rostrup-Nielsen, F. Abild-Pedersen, J.K. Nórskov, Atomic-scale imaging of carbon nanofibre growth. Nature 427, 426–429 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    K. Awasthi, A. Srivastava, O.N. Srivastava, Synthesis of carbon nanotubes. J. Nanosci. Nanotechnol. 5(10), 1616–1636 (2005)Google Scholar
  37. 37.
    W.Z. Li, D.Z. Wang, S.X. Yang, J.G. Wen, Z.F. Ren, Controlled growth of carbon nanotubes on graphite foil by chemical vapor deposition. Chem. Phys. Lett. 335, 141–149 (2001)ADSCrossRefGoogle Scholar
  38. 38.
    G.B. Adams, O.F. Sankey, J.B. Page, M. O’Keeffe, D.A. Drabold, Energetics of large fullerenes: balls, tubes, and capsules. Science 256(5065), 1792–1795 (1992)Google Scholar
  39. 39.
    J.F. Colomer, C. Stephan, S. Lefrant, G. Van Tendeloo, I. Willems, Z. Kónya, A. Fonseca, C. Laurent, J.B. Nagy, Large-scale synthesis of single-wall carbon nanotubes by catalytic chemical vapor deposition (CCVD) method. Chem. Phys. Lett. 317(1–2), 83–89 (2000)ADSCrossRefGoogle Scholar
  40. 40.
    B. Kitiyanan, W.E. Alvarez, J.H. Harwell, D.E. Resasco, Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co–Mo catalysts. Chem. Phys. Lett. 317(3–5), 497–503 (2000)Google Scholar
  41. 41.
    J. Kong, H.T. Soh, A.M. Cassell, C.F. Quate, H. Dai, Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395(6705), 878–881 (1998)ADSCrossRefGoogle Scholar
  42. 42.
    S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430), 603–605 (1993)ADSCrossRefGoogle Scholar
  43. 43.
    J. Gavillet, J. Thibault, O. Stephan, H. Amara, A. Loiseau, C. Bichara, J.P. Gaspard, F. Ducastelle, Nucleation and growth of single-walled nanotubes: the role of metallic catalysts. J. Nanosci. Nanotechnol. 4(4), 346–359 (2004)CrossRefGoogle Scholar
  44. 44.
    A.R. Harutyunyan, The catalyst for growing single-walled carbon nanotubes by catalytic chemical vapor deposition method. J. Nanosci. Nanotechnol. 9(4), 2480–2495 (2009)MathSciNetCrossRefGoogle Scholar
  45. 45.
    C.T. Wirth, S. Hofmann, J. Robertson, State of the catalyst during carbon nanotube growth. Diam. Relat. Mater. 18(5–8), 940–945 (2009)Google Scholar
  46. 46.
    Z.P. Huang, D.L. Carnahan, J. Rybczynski, M. Giersig, M. Sennett, D.Z. Wang, J.G. Wen, K. Kempa, Z.F. Ren, Growth of large periodic arrays of carbon nanotubes. Appl. Phys. Lett. 82(3), 460–462 (2003)ADSCrossRefGoogle Scholar
  47. 47.
    J.B. In, C.P. Grigoropoulos, A.A. Chernov, A. Noy, Hidden role of trace gas impurities in chemical vapor deposition growth of vertically-aligned carbon nanotube arrays. Appl. Phys. Lett. 98(15), 153102 (2011)ADSCrossRefGoogle Scholar
  48. 48.
    W. Li, J. Wen, Z. Ren, Effect of temperature on growth and structure of carbon nanotubes by chemical vapor deposition. Appl. Phys. A 74(3), 397–402 (2002)ADSCrossRefGoogle Scholar
  49. 49.
    Y. Tu, Z.P. Huang, D.Z. Wang, J.G. Wen, Z.F. Ren, Growth of aligned carbon nanotubes with controlled site density. Appl. Phys. Lett. 80(21), 4018–4020 (2002)ADSCrossRefGoogle Scholar
  50. 50.
    W. Li, J. Wen, Y. Tu, Z. Ren, Effect of gas pressure on the growth and structure of carbon nanotubes by chemical vapor deposition. Appl. Phys. A 73(2), 259–264 (2001)ADSCrossRefGoogle Scholar
  51. 51.
    R.S. Wagner, W.C. Ellis, Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4(5), 89–90 (1964)ADSCrossRefGoogle Scholar
  52. 52.
    S. Hofmann, C. Ducati, J. Robertson, B. Kleinsorge, Low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 83(1), 135–137 (2003)ADSCrossRefGoogle Scholar
  53. 53.
    S. Hofmann, C. Ducati, B. Kleinsorge, J. Robertson, Direct growth of aligned carbon nanotube field emitter arrays onto plastic substrates. Appl. Phys. Lett. 83(22), 4661–4663 (2003)ADSCrossRefGoogle Scholar
  54. 54.
    M. Meyyappan, L. Delzeit, A. Cassell, D. Hash, Carbon nanotube growth by PECVD: a review. Plasma Sources Sci. Technol. 12(2), 205–216 (2003)ADSCrossRefGoogle Scholar
  55. 55.
    M. Meyyappan, A review of plasma enhanced chemical vapour deposition of carbon nanotubes. J. Phys. D: Appl. Phys. 42(213001), 15 (2009)Google Scholar
  56. 56.
    K.B.K. Teo, M. Chhowalla, G.A.J. Amaratunga, W.I. Milne, D.G. Hasko, G. Pirio, P. Legagneux, F. Wyczisk, D. Pribat, Uniform patterned growth of carbon nanotubes without surface carbon. Appl. Phys. Lett. 79(10), 1534–1536 (2001)ADSCrossRefGoogle Scholar
  57. 57.
    V.I. Merkulov, A.V. Melechko, M.A. Guillorn, D.H. Lowndes, M.L. Simpson, Growth rate of plasma-synthesized vertically aligned carbon nanofibers. Chem. Phys. Lett. 361(5–6), 492–498 (2002)ADSCrossRefGoogle Scholar
  58. 58.
    B.A. Cruden, A.M. Cassell, Q. Ye, M. Meyyappan, Reactor design considerations in the hot filament/direct current plasma synthesis of carbon nanofibers. J. Appl. Phys. 94(6), 4070–4078 (2003)ADSCrossRefGoogle Scholar
  59. 59.
    K.B.K. Teo, D.B. Hash, R.G. Lacerda, N.L. Rupesinghe, M.S. Bell, S.H. Dalal, D. Bose, T.R. Govindan, B.A. Cruden, M. Chhowalla, G.A.J. Amaratunga, M. Meyyappan, W.I. Milne, The significance of plasma heating in carbon nanotube and nanofiber growth. Nano Lett. 4(5), 921–926 (2004)ADSCrossRefGoogle Scholar
  60. 60.
    J.-H. Han, W.-S. Yang, J.-B. Yoo, C.-Y. Park, Growth and emission characteristics of vertically well-aligned carbon nanotubes grown on glass substrate by hot filament plasma-enhanced chemical vapor deposition. J. Appl. Phys. 88(12), 7363–7365 (2000)ADSCrossRefGoogle Scholar
  61. 61.
    Y. Wang, Nanophotonics of vertically aligned carbon nanotubes: two-dimensional photonic crystals and optical dipole antenna. Ph.D. Thesis, Boston College, 2006Google Scholar
  62. 62.
    H. Wang, Z.F. Ren, The evolution of carbon nanotubes during their growth by plasma enhanced chemical vapor deposition. Nanotechnology 22(40), 405601 (2011)CrossRefGoogle Scholar
  63. 63.
    T.A. El-Aguizy, J. hyun Jeong, Y.-B. Jeon, W.Z. Li, Z.F. Ren, S.-G. Kim, Transplanting carbon nanotubes. Appl. Phys. Lett. 85(24), 5995–5997 (2004)Google Scholar
  64. 64.
    V.I. Merkulov, D.H. Lowndes, Y.Y. Wei, G. Eres, E. Voelkl, Patterned growth of individual and multiple vertically aligned carbon nanofibers. Appl. Phys. Lett. 76(24), 3555–3557 (2000)ADSCrossRefGoogle Scholar
  65. 65.
    M. Chhowalla, K.B.K. Teo, C. Ducati, N.L. Rupesinghe, G.A.J. Amaratunga, A.C. Ferrari, D. Roy, J. Robertson, W.I. Milne, Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. J. Appl. Phys. 90(10), 5308–5317 (2001)ADSCrossRefGoogle Scholar
  66. 66.
    S.H. Jo, Y. Tu, Z.P. Huang, D.L. Carnahan, D.Z. Wang, Z.F. Ren, Effect of length and spacing of vertically aligned carbon nanotubes on field emission properties. Appl. Phys. Lett. 82(20), 3520–3522 (2003)Google Scholar
  67. 67.
    S.H. Jo, Y. Tu, Z.P. Huang, D.L. Carnahan, J.Y. Huang, D.Z. Wang, Z.F. Ren, Correlation of field emission and surface microstructure of vertically aligned carbon nanotubes. Appl. Phys. Lett. 84(3), 413–415 (2004)ADSCrossRefGoogle Scholar
  68. 68.
    R.E. Morjan, V. Maltsev, O. Nerushev, Y. Yao, L.K.L. Falk, E.E.B. Campbell, High growth rates and wall decoration of carbon nanotubes grown by plasma-enhanced chemical vapour deposition. Chem. Phys. Lett. 383(3–4), 385–390 (2004)ADSCrossRefGoogle Scholar
  69. 69.
    Y. Tu, Y. Lin, Z.F. Ren, Nanoelectrode arrays based on low site density aligned carbon nanotubes. Nano Lett. 3(1), 107–109 (2003)ADSCrossRefGoogle Scholar
  70. 70.
    Y. Wang, J. Rybczynski, D.Z. Wang, K. Kempa, Z.F. Ren, W.Z. Li, B. Kimball, Periodicity and alignment of large-scale carbon nanotubes arrays. Appl. Phys. Lett. 85(20), 4741–4743 (2004)ADSCrossRefGoogle Scholar
  71. 71.
    Z.P. Huang, J.W. Xu, Z.F. Ren, J.H. Wang, M.P. Siegal, P.N. Provencio, Growth of highly oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition. Appl. Phys. Lett. 73(26), 3845–3847 (1998)ADSCrossRefGoogle Scholar
  72. 72.
    Y. Shiratori, H. Hiraoka, Y. Takeuchi, S. Itoh, M. Yamamoto, One-step formation of aligned carbon nanotube field emitters at 400 \({^\circ }\)C. Appl. Phys. Lett. 82(15), 2485–2487 (2003)Google Scholar
  73. 73.
    L. Delzeit, I. McAninch, B.A. Cruden, D. Hash, B. Chen, J. Han, M. Meyyappan, Growth of multiwall carbon nanotubes in an inductively coupled plasma reactor. J. Appl. Phys. 91(9), 6027–6033 (2002)ADSCrossRefGoogle Scholar
  74. 74.
    H.S. Kang, H.J. Yoon, C.O. Kim, J.P. Hong, I.T. Han, S.N. Cha, B.K. Song, J.E. Jung, N.S. Lee, J.M. Kim, Low temperature growth of multi-wall carbon nanotubes assisted by mesh potential using a modified plasma enhanced chemical vapor deposition system. Chem. Phys. Lett. 349(3–4), 196–200 (2001)ADSCrossRefGoogle Scholar
  75. 75.
    V.K. Varadan, J. Xie, Large-scale synthesis of multi-walled carbon nanotubes by microwave CVD. Smart Mater. Struct. 11(4), 610 (2002)ADSCrossRefGoogle Scholar
  76. 76.
    H. Cui, O. Zhou, B.R. Stoner, Deposition of aligned bamboo-like carbon nanotubes via microwave plasma enhanced chemical vapor deposition. J. Appl. Phys. 88(10), 6072–6074 (2000)ADSCrossRefGoogle Scholar
  77. 77.
    H. Murakami, M. Hirakawa, C. Tanaka, H. Yamakawa, Field emission from well-aligned, patterned, carbon nanotube emitters. Appl. Phys. Lett. 76(13), 1776–1778 (2000)ADSCrossRefGoogle Scholar
  78. 78.
    M. Okai, T. Muneyoshi, T. Yaguchi, S. Sasaki, Structure of carbon nanotubes grown by microwave-plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 77(21), 3468–3470 (2000)ADSCrossRefGoogle Scholar
  79. 79.
    L.C. Qin, D. Zhou, A.R. Krauss, D.M. Gruen, Growing carbon nanotubes by microwave plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 72(26), 3437–3439 (1998)ADSCrossRefGoogle Scholar
  80. 80.
    H. Boehm, Carbon from carbon monoxide disproportionation on nickel and iron catalysts: Morphological studies and possible growth mechanisms. Carbon 11(6), 583–586 (1973)CrossRefGoogle Scholar
  81. 81.
    R.T.K. Baker, P.S. Harris, R.B. Thomas, R.J. Waite, Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene. J. Catal. 30(1), 86–95 (1973)CrossRefGoogle Scholar
  82. 82.
    L. Huang, B. White, M.Y. Sfeir, M. Huang, H.X. Huang, S. Wind, J. Hone, S. O’Brien, Cobalt ultrathin film catalyzed ethanol chemical vapor deposition of single-walled carbon nanotubes. J. Phys. Chem. B 110(23), 11103–11109 (2006)CrossRefGoogle Scholar
  83. 83.
    Y. Zhang, A. Chang, J. Cao, Q. Wang, W. Kim, Y. Li, N. Morris, E. Yenilmez, J. Kong, H. Dai, Electric-field-directed growth of aligned single-walled carbon nanotubes. Appl. Phys. Lett. 79(19), 3155–3157 (2001)ADSCrossRefGoogle Scholar
  84. 84.
    Y. Avigal, R. Kalish, Growth of aligned carbon nanotubes by biasing during growth. Appl. Phys. Lett. 78(16), 2291–2293 (2001)ADSCrossRefGoogle Scholar
  85. 85.
    J.G. Wen, Z.P. Huang, D.Z. Wang, J.H. Chen, S.X. Yang, Z.F. Ren, J.H. Wang, L.E. Calvet, J. Chen, J.F. Klemic, M. Reed, Growth and characterization of aligned carbon nanotubes from patterned nickel nanodots and uniform thin films. J. Mater. Res. 16(11), 3246–3253 (2001)ADSCrossRefGoogle Scholar
  86. 86.
    V.I. Merkulov, A.V. Melechko, M.A. Guillorn, D.H. Lowndes, M.L. Simpson, Alignment mechanism of carbon nanofibers produced by plasma-enhanced chemical-vapor deposition. Appl. Phys. Lett. 79(18), 2970–2972 (2001)ADSCrossRefGoogle Scholar
  87. 87.
    Y. Hayashi, T. Negishi, S. Nishino, Growth of well-aligned carbon nanotubes on nickel by hot-filament-assisted DC plasma chemical vapor deposition in a \(\text{ CH}_4\)/\(\text{H}_2\) plasma. J. Vac. Sci. Technol. A 19(4), 1796–1799 (2001)Google Scholar
  88. 88.
    K. MacKenzie, O. Dunens, A.T. Harris, A review of carbon nanotube purification by microwave assisted acid digestion. Sep. Purif. Technol. 66(2), 209–222 (2009)CrossRefGoogle Scholar
  89. 89.
    X. Song, Y. Fang, A technique of purification process of single-walled carbon nanotubes with air. Spectrochim. Acta A 67(3–4), 1131–1134 (2007)ADSGoogle Scholar
  90. 90.
    T. Guo, P. Nikolaev, A. Thess, D. Colbert, R. Smalley, Catalytic growth of single-walled manotubes by laser vaporization. Chem. Phys. Lett. 243(1–2), 49–54 (1995)CrossRefGoogle Scholar
  91. 91.
    A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tománek, J.E. Fischer, R.E. Smalley, Crystalline ropes of metallic carbon nanotubes. Science 273(5274), 483–487 (1996)ADSCrossRefGoogle Scholar
  92. 92.
    A.G. Nasibulin, P.V. Pikhitsa, H. Jiang, D.P. Brown, A.V. Krasheninnikov, A.S. Anisimov, P. Queipo, A. Moisala, D. Gonzalez, G. Lientschnig, A. Hassanien, S.D. Shandakov, G. Lolli, D.E. Resasco, M. Choi, D. Tománek, E.I. Kauppinen, A novel hybrid carbon material. Nat. Nanotechnol. 2(3), 156–161 (2007)ADSCrossRefGoogle Scholar
  93. 93.
    Z. Huang, D. Wang, J. Wen, M. Sennett, H. Gibson, Z. Ren, Effect of nickel, iron and cobalt on growth of aligned carbon nanotubes. Appl. Phys. A 74(3), 387–391 (2002)ADSCrossRefGoogle Scholar
  94. 94.
    S. Amelinckx, X.B. Zhang, D. Bernaerts, X.F. Zhang, V. Ivanov, J.B. Nagy, A formation mechanism for catalytically grown helix-shaped graphite nanotubes. Science 265(5172), 635–639 (1994)ADSCrossRefGoogle Scholar
  95. 95.
    N. Yoshikawa, T. Asari, N. Kishi, S. Hayashi, T. Sugai, H. Shinohara, An efficient fabrication of vertically aligned carbon nanotubes on flexible aluminum foils by catalyst-supported chemical vapor deposition. Nanotehnology 19(24), 245607 (2008)ADSCrossRefGoogle Scholar
  96. 96.
    C.-C. Su, S.-H. Chang, Effective growth of vertically aligned carbon nanotube turfs on flexible Al foil. Mater. Lett. 65(17–18), 2700–2702 (2011)CrossRefGoogle Scholar
  97. 97.
    T. Hiraoka, T. Yamada, K. Hata, D.N. Futaba, H. Kurachi, S. Uemura, M. Yumura, S. Iijima, Synthesis of single- and double-walled carbon nanotube forests on conducting metal foils. J. Am. Chem. Soc. 128(41), 13338–13339 (2006)CrossRefGoogle Scholar
  98. 98.
    X. Lepró, M.D. Lima, R.H. Baughman, Spinnable carbon nanotube forests grown on thin, flexible metallic substrates. Carbon 48(12), 3621–3627 (2010)CrossRefGoogle Scholar
  99. 99.
    S.P. Patole, H.-I. Kim, J.-H. Jung, A.S. Patole, H.-J. Kim, I.-T. Han, V.N. Bhoraskar, J.-B. Yoo, The synthesis of vertically-aligned carbon nanotubes on an aluminum foil laminated on stainless steel. Carbon 49, 3522–3528 (2011)CrossRefGoogle Scholar
  100. 100.
    M.K. Tabatabaei, H. Ghafouri fard, J. Koohsorkhi, S. Khatami, S. Mohajerzadeh, Remote and direct plasma regions for low-temperature growth of carbon nanotubes on glass substrates for display applications. J. Phys. D: Appl. Phys. 44(11), 115401 (2011)Google Scholar
  101. 101.
    T. Nozaki, K. Okazaki, Carbon nanotube synthesis pressure glow discharge: a review. Plasma Processes Polym. 5(4), 301–321 (2008)Google Scholar
  102. 102.
    T. Nozaki, T. Goto, K. Okazaki, K. Ohnishi, L. Mangolini, J. Heberlein, U. Kortshagen, Deposition of vertically oriented carbon nanofibers in atmospheric pressure radio frequency discharge. J. Appl. Phys. 99(2), 024310-1–024310-7 (2006)Google Scholar
  103. 103.
    T. Nozaki, K. Ohnishi, K. Okazaki, U. Kortshagen, Fabrication of vertically aligned single-walled carbon nanotubes in atmospheric pressure non-thermal plasma CVD. Carbon 45(2), 364–374 (2007)CrossRefGoogle Scholar
  104. 104.
    T. Nozaki, Y. Kimura, K. Okazaki, Carbon nanotubes deposition in glow barrier discharge enhanced catalytic CVD. J. Phys. D: Appl. Phys. 35(21), 2779–2784 (2002)ADSCrossRefGoogle Scholar
  105. 105.
    L. Zheng, G. Sun, Z. Zhan, Tuning array morphology for high-strength carbon-nanotube fibers. Small 6(1), 132–137 (2010)CrossRefGoogle Scholar
  106. 106.
    S. Huang, L. Dai, A. Mau, Controlled fabrication of aligned carbon nanotube patterns. Phys. B 323(1–4), 333–335 (2002)Google Scholar
  107. 107.
    L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J.-M. Bonard, K. Kern, Scanning field emission from patterned carbon nanotube films. Appl. Phys. Lett. 76(15), 2071–2073 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of PhysicsBoston CollegeChestnut HillUSA
  2. 2.Department of PhysicsBoston CollegeChestnut HillUSA
  3. 3.Institute for Advanced Materials, Academy of Advanced OptoelectronicsSouth China Normal UniversityGuangzhouPeople’s Republic of China

Personalised recommendations