Skip to main content

Chemical Vapor Deposition of Carbon Nanotubes

  • Chapter
  • First Online:
  • 2195 Accesses

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Chemical vapor deposition is a popular industrial method to grow carbon nanotubes because of the mass production at low cost. Such method is also a very important technique to in situ align carbon nanotubes. In this chapter, we introduce various chemical vapor deposition methods, including thermal chemical vapor deposition and plasma-enhanced chemical vapor deposition, as well as the mechanism of growth and alignment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao, G. Wang, Large-scale synthesis of aligned carbon nanotubes. Science 274(5293), 1701–1703 (1996)

    Article  ADS  Google Scholar 

  2. Z.W. Pan, S.S. Xie, B.H. Chang, C.Y. Wang, L. Lu, W. Liu, W.Y. Zhou, W.Z. Li, L.X. Qian, Very long carbon nanotubes. Nature 394(6694), 631–632 (1998)

    Article  ADS  Google Scholar 

  3. M. Terrones, N. Grobert, J. Olivares, J.P. Zhang, H. Terrones, K. Kordatos, W.K. Hsu, J.P. Hare, P.D. Townsend, K. Prassides, A.K. Cheetham, H.W. Kroto, D.R.M. Walton, Controlled production of aligned-nanotube bundles. Nature 388(6637), 52–55 (1997)

    Article  ADS  Google Scholar 

  4. S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H. Dai, Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283(5401), 512–514 (1999)

    Article  ADS  Google Scholar 

  5. Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegal, P.N. Provencio, Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282, 1105–1107 (1998)

    Article  ADS  Google Scholar 

  6. Y.C. Choi, Y.M. Shin, Y.H. Lee, B.S. Lee, G.-S. Park, W.B. Choi, N.S. Lee, J.M. Kim, Controlling the diameter, growth rate, and density of vertically aligned carbon nanotubes synthesized by microwave plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 76(17), 2367–2369 (2000)

    Article  ADS  Google Scholar 

  7. C. Bower, W. Zhu, S. Jin, O. Zhou, Plasma-induced alignment of carbon nanotubes. Appl. Phys. Lett. 77(6), 830–832 (2000)

    Article  ADS  Google Scholar 

  8. C. Bower, O. Zhou, W. Zhu, D.J. Werder, S. Jin, Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition. Appl. Phys. Lett. 77(17), 2767–2769 (2000)

    Article  ADS  Google Scholar 

  9. B.J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Gavalas, L.G. Bachas, Aligned multiwalled carbon nanotube membranes. Science 303(5654), 62–65 (2004)

    Google Scholar 

  10. L. Ge, S. Sethi, L. Ci, P.M. Ajayan, A. Dhinojwala, Carbon nanotube-based synthetic gecko tapes. Proc. Natl. Acad. Sci. USA 104(26), 10792–10795 (2007)

    Article  ADS  Google Scholar 

  11. K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D.N. Futaba, M. Yumura, K. Hata, A black body absorber from vertically aligned single-walled carbon nanotubes. Proc. Natl. Acad. Sci. USA 106(15), 6044–6047 (2009)

    Article  ADS  Google Scholar 

  12. J.H. Chen, W.Z. Li, D.Z. Wang, S.X. Yang, J.G. Wen, Z.F. Ren, Electrochemical characterization of carbon nanotubes as electrode in electrochemical double-layer capacitors. Carbon 40( 8), 1193–1197 (2002)

    Google Scholar 

  13. R.D. Bennett, G.Y. Xiong, Z.F. Ren, R.E. Cohen, Using block copolymer micellar thin films as templates for the production of catalysts for carbon nanotube growth. Chem. Mater. 16(26), 5589–5595 (2004)

    Article  Google Scholar 

  14. S.H. Jo, J.Y. Huang, S. Chen, G.Y. Xiong, D.Z. Wang, Z.F. Ren, Field emission of carbon nanotubes grown on carbon cloth. J. Vac. Sci. Technol. B 23(6), 2363–2368 (2005)

    Article  Google Scholar 

  15. C.J. Lee, J.H. Park, J. Park, Synthesis of bamboo-shaped multiwalled carbon nanotubes using thermal chemical vapor deposition. Chem. Phys. Lett. 323(5–6), 560–565 (2000)

    Article  ADS  Google Scholar 

  16. M. Zhang, S. Fang, A.A. Zakhidov, S.B. Lee, A.E. Aliev, C.D. Williams, K.R. Atkinson, R.H. Baughman, Strong, transparent, multifunctional, carbon nanotube sheets. Science 309(5738), 1215–1219 (2005)

    Article  ADS  Google Scholar 

  17. G. Zhang, D. Mann, L. Zhang, A. Javey, Y. Li, E. Yenilmez, Q. Wang, J.P. McVittie, Y. Nishi, J. Gibbons, H. Dai, Ultra-high-yield growth of vertical single-walled carbon nanotubes: hidden roles of hydrogen and oxygen. Proc. Nat. Acad. Sci. USA 102(45), 16141–16145 (2005)

    Article  ADS  Google Scholar 

  18. G.-Y. Xiong, D. Wang, Z. Ren, Aligned millimeter-long carbon nanotube arrays grown on single crystal magnesia. Carbon 44(5), 969–973 (2006)

    Article  Google Scholar 

  19. K. Hata, D.N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima, Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306(5700), 1362–1364 (2004)

    Google Scholar 

  20. G.Y. Xiong, Y. Suda, D.Z. Wang, J.Y. Huang, Z.F. Ren, Effect of temperature, pressure, and gas ratio of methane to hydrogen on the synthesis of double-walled carbon nanotubes by chemical vapour deposition. Nanotechnology 16(4), 532–535 (2005)

    Article  ADS  Google Scholar 

  21. K. Hasegawa, S. Noda, Moderating carbon supply and suppressing ostwald ripening of catalyst particles to produce 4.5-mm-tall single-walled carbon nanotube forests. Carbon 49(13), 4497–4504 (2011)

    Article  Google Scholar 

  22. T. Sugai, T. Okazaki, H. Yoshida, H. Shinohara, Syntheses of single- and double-wall carbon nanotubes by the HTPAD and HFCVD methods. New J. Phys. 6, 21 (2004)

    Article  ADS  Google Scholar 

  23. T.B. Massalski, H. Okamoto (eds.), Binary Alloy Phase Diagrams (ASM International, Materials Park, 1996)

    Google Scholar 

  24. H. Ago, T. Komatsu, S. Ohshima, Y. Kuriki, M. Yumura, Dispersion of metal nanoparticles for aligned carbon nanotube arrays. Appl. Phys. Lett. 77(1), 79–81 (2000)

    Article  ADS  Google Scholar 

  25. Y. Li, W. Kim, Y. Zhang, M. Rolandi, D. Wang, H. Dai, Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes. J. Phys. Chem. B 105(46), 11424–11431 (2001)

    Article  Google Scholar 

  26. E.T. Thostenson, W.Z. Li, D.Z. Wang, Z.F. Ren, T.W. Chou, Carbon nanotube/carbon fiber hybrid multiscale composites. J. Appl. Phys. 91(9), 6034–6037 (2002)

    Article  ADS  Google Scholar 

  27. A.V. Melechko, V.I. Merkulov, T.E. McKnight, M.A. Guillorn, K.L. Klein, D.H. Lowndes, M.L. Simpson, Vertically aligned carbon nanofibers and related structures: controlled synthesis and directed assembly. J. Appl. Phys. 97(4), 041301/1–041301/39 (2005)

    Google Scholar 

  28. R. Baker, Catalytic growth of carbon filaments. Carbon 27(3), 315–323 (1989)

    Google Scholar 

  29. M. Endo, K. Takeuchi, K. Kobori, K. Takahashi, H.W. Kroto, A. Sarkar, Pyrolytic carbon nanotubes from vapor-grown carbon fibers. Carbon 33(7), 873–881 (1995)

    Google Scholar 

  30. J.-C. Charlier, A. De Vita, X. Blase, R. Car, Microscopic growth mechanisms for carbon nanotubes. Science 275(5300), 647–649 (1997)

    Article  Google Scholar 

  31. M. Yudasaka, R. Kikuchi, Y. Ohki, E. Ota, S. Yoshimura, Behavior of Ni in carbon nanotube nucleation. Appl. Phys. Lett. 70(14), 1817–1818 (1997)

    Article  ADS  Google Scholar 

  32. J.C. Charlier, S. Iijima, Growth Mechanisms of Carbon Nanotubes, in Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, ed by. M.S. Dresselhaus, G. Dresselhaus, P. Avouris. Topics in Applied Physics, vol 80 (Springer, Berlin, 2001), pp. 55–81

    Google Scholar 

  33. T.W. Ebbesen (ed.), Carbon Nanotubes: Preparation and Properties (Chemical Rubber, Boca Raton, 1997)

    Google Scholar 

  34. H. Yoshida, S. Takeda, T. Uchiyama, H. Kohno, Y. Homma, Atomic-scale in-situ observation of carbon nanotube growth from solid state iron carbide nanoparticles. Nano Lett. 8(7), 2082–2086 (2008)

    Article  ADS  Google Scholar 

  35. S. Helveg, C. López-Cartes, J. Sehested, P.L. Hansen, B.S. Clausen, J.R. Rostrup-Nielsen, F. Abild-Pedersen, J.K. Nórskov, Atomic-scale imaging of carbon nanofibre growth. Nature 427, 426–429 (2004)

    Article  ADS  Google Scholar 

  36. K. Awasthi, A. Srivastava, O.N. Srivastava, Synthesis of carbon nanotubes. J. Nanosci. Nanotechnol. 5(10), 1616–1636 (2005)

    Google Scholar 

  37. W.Z. Li, D.Z. Wang, S.X. Yang, J.G. Wen, Z.F. Ren, Controlled growth of carbon nanotubes on graphite foil by chemical vapor deposition. Chem. Phys. Lett. 335, 141–149 (2001)

    Article  ADS  Google Scholar 

  38. G.B. Adams, O.F. Sankey, J.B. Page, M. O’Keeffe, D.A. Drabold, Energetics of large fullerenes: balls, tubes, and capsules. Science 256(5065), 1792–1795 (1992)

    Google Scholar 

  39. J.F. Colomer, C. Stephan, S. Lefrant, G. Van Tendeloo, I. Willems, Z. Kónya, A. Fonseca, C. Laurent, J.B. Nagy, Large-scale synthesis of single-wall carbon nanotubes by catalytic chemical vapor deposition (CCVD) method. Chem. Phys. Lett. 317(1–2), 83–89 (2000)

    Article  ADS  Google Scholar 

  40. B. Kitiyanan, W.E. Alvarez, J.H. Harwell, D.E. Resasco, Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co–Mo catalysts. Chem. Phys. Lett. 317(3–5), 497–503 (2000)

    Google Scholar 

  41. J. Kong, H.T. Soh, A.M. Cassell, C.F. Quate, H. Dai, Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395(6705), 878–881 (1998)

    Article  ADS  Google Scholar 

  42. S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430), 603–605 (1993)

    Article  ADS  Google Scholar 

  43. J. Gavillet, J. Thibault, O. Stephan, H. Amara, A. Loiseau, C. Bichara, J.P. Gaspard, F. Ducastelle, Nucleation and growth of single-walled nanotubes: the role of metallic catalysts. J. Nanosci. Nanotechnol. 4(4), 346–359 (2004)

    Article  Google Scholar 

  44. A.R. Harutyunyan, The catalyst for growing single-walled carbon nanotubes by catalytic chemical vapor deposition method. J. Nanosci. Nanotechnol. 9(4), 2480–2495 (2009)

    Article  MathSciNet  Google Scholar 

  45. C.T. Wirth, S. Hofmann, J. Robertson, State of the catalyst during carbon nanotube growth. Diam. Relat. Mater. 18(5–8), 940–945 (2009)

    Google Scholar 

  46. Z.P. Huang, D.L. Carnahan, J. Rybczynski, M. Giersig, M. Sennett, D.Z. Wang, J.G. Wen, K. Kempa, Z.F. Ren, Growth of large periodic arrays of carbon nanotubes. Appl. Phys. Lett. 82(3), 460–462 (2003)

    Article  ADS  Google Scholar 

  47. J.B. In, C.P. Grigoropoulos, A.A. Chernov, A. Noy, Hidden role of trace gas impurities in chemical vapor deposition growth of vertically-aligned carbon nanotube arrays. Appl. Phys. Lett. 98(15), 153102 (2011)

    Article  ADS  Google Scholar 

  48. W. Li, J. Wen, Z. Ren, Effect of temperature on growth and structure of carbon nanotubes by chemical vapor deposition. Appl. Phys. A 74(3), 397–402 (2002)

    Article  ADS  Google Scholar 

  49. Y. Tu, Z.P. Huang, D.Z. Wang, J.G. Wen, Z.F. Ren, Growth of aligned carbon nanotubes with controlled site density. Appl. Phys. Lett. 80(21), 4018–4020 (2002)

    Article  ADS  Google Scholar 

  50. W. Li, J. Wen, Y. Tu, Z. Ren, Effect of gas pressure on the growth and structure of carbon nanotubes by chemical vapor deposition. Appl. Phys. A 73(2), 259–264 (2001)

    Article  ADS  Google Scholar 

  51. R.S. Wagner, W.C. Ellis, Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4(5), 89–90 (1964)

    Article  ADS  Google Scholar 

  52. S. Hofmann, C. Ducati, J. Robertson, B. Kleinsorge, Low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 83(1), 135–137 (2003)

    Article  ADS  Google Scholar 

  53. S. Hofmann, C. Ducati, B. Kleinsorge, J. Robertson, Direct growth of aligned carbon nanotube field emitter arrays onto plastic substrates. Appl. Phys. Lett. 83(22), 4661–4663 (2003)

    Article  ADS  Google Scholar 

  54. M. Meyyappan, L. Delzeit, A. Cassell, D. Hash, Carbon nanotube growth by PECVD: a review. Plasma Sources Sci. Technol. 12(2), 205–216 (2003)

    Article  ADS  Google Scholar 

  55. M. Meyyappan, A review of plasma enhanced chemical vapour deposition of carbon nanotubes. J. Phys. D: Appl. Phys. 42(213001), 15 (2009)

    Google Scholar 

  56. K.B.K. Teo, M. Chhowalla, G.A.J. Amaratunga, W.I. Milne, D.G. Hasko, G. Pirio, P. Legagneux, F. Wyczisk, D. Pribat, Uniform patterned growth of carbon nanotubes without surface carbon. Appl. Phys. Lett. 79(10), 1534–1536 (2001)

    Article  ADS  Google Scholar 

  57. V.I. Merkulov, A.V. Melechko, M.A. Guillorn, D.H. Lowndes, M.L. Simpson, Growth rate of plasma-synthesized vertically aligned carbon nanofibers. Chem. Phys. Lett. 361(5–6), 492–498 (2002)

    Article  ADS  Google Scholar 

  58. B.A. Cruden, A.M. Cassell, Q. Ye, M. Meyyappan, Reactor design considerations in the hot filament/direct current plasma synthesis of carbon nanofibers. J. Appl. Phys. 94(6), 4070–4078 (2003)

    Article  ADS  Google Scholar 

  59. K.B.K. Teo, D.B. Hash, R.G. Lacerda, N.L. Rupesinghe, M.S. Bell, S.H. Dalal, D. Bose, T.R. Govindan, B.A. Cruden, M. Chhowalla, G.A.J. Amaratunga, M. Meyyappan, W.I. Milne, The significance of plasma heating in carbon nanotube and nanofiber growth. Nano Lett. 4(5), 921–926 (2004)

    Article  ADS  Google Scholar 

  60. J.-H. Han, W.-S. Yang, J.-B. Yoo, C.-Y. Park, Growth and emission characteristics of vertically well-aligned carbon nanotubes grown on glass substrate by hot filament plasma-enhanced chemical vapor deposition. J. Appl. Phys. 88(12), 7363–7365 (2000)

    Article  ADS  Google Scholar 

  61. Y. Wang, Nanophotonics of vertically aligned carbon nanotubes: two-dimensional photonic crystals and optical dipole antenna. Ph.D. Thesis, Boston College, 2006

    Google Scholar 

  62. H. Wang, Z.F. Ren, The evolution of carbon nanotubes during their growth by plasma enhanced chemical vapor deposition. Nanotechnology 22(40), 405601 (2011)

    Article  Google Scholar 

  63. T.A. El-Aguizy, J. hyun Jeong, Y.-B. Jeon, W.Z. Li, Z.F. Ren, S.-G. Kim, Transplanting carbon nanotubes. Appl. Phys. Lett. 85(24), 5995–5997 (2004)

    Google Scholar 

  64. V.I. Merkulov, D.H. Lowndes, Y.Y. Wei, G. Eres, E. Voelkl, Patterned growth of individual and multiple vertically aligned carbon nanofibers. Appl. Phys. Lett. 76(24), 3555–3557 (2000)

    Article  ADS  Google Scholar 

  65. M. Chhowalla, K.B.K. Teo, C. Ducati, N.L. Rupesinghe, G.A.J. Amaratunga, A.C. Ferrari, D. Roy, J. Robertson, W.I. Milne, Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. J. Appl. Phys. 90(10), 5308–5317 (2001)

    Article  ADS  Google Scholar 

  66. S.H. Jo, Y. Tu, Z.P. Huang, D.L. Carnahan, D.Z. Wang, Z.F. Ren, Effect of length and spacing of vertically aligned carbon nanotubes on field emission properties. Appl. Phys. Lett. 82(20), 3520–3522 (2003)

    Google Scholar 

  67. S.H. Jo, Y. Tu, Z.P. Huang, D.L. Carnahan, J.Y. Huang, D.Z. Wang, Z.F. Ren, Correlation of field emission and surface microstructure of vertically aligned carbon nanotubes. Appl. Phys. Lett. 84(3), 413–415 (2004)

    Article  ADS  Google Scholar 

  68. R.E. Morjan, V. Maltsev, O. Nerushev, Y. Yao, L.K.L. Falk, E.E.B. Campbell, High growth rates and wall decoration of carbon nanotubes grown by plasma-enhanced chemical vapour deposition. Chem. Phys. Lett. 383(3–4), 385–390 (2004)

    Article  ADS  Google Scholar 

  69. Y. Tu, Y. Lin, Z.F. Ren, Nanoelectrode arrays based on low site density aligned carbon nanotubes. Nano Lett. 3(1), 107–109 (2003)

    Article  ADS  Google Scholar 

  70. Y. Wang, J. Rybczynski, D.Z. Wang, K. Kempa, Z.F. Ren, W.Z. Li, B. Kimball, Periodicity and alignment of large-scale carbon nanotubes arrays. Appl. Phys. Lett. 85(20), 4741–4743 (2004)

    Article  ADS  Google Scholar 

  71. Z.P. Huang, J.W. Xu, Z.F. Ren, J.H. Wang, M.P. Siegal, P.N. Provencio, Growth of highly oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition. Appl. Phys. Lett. 73(26), 3845–3847 (1998)

    Article  ADS  Google Scholar 

  72. Y. Shiratori, H. Hiraoka, Y. Takeuchi, S. Itoh, M. Yamamoto, One-step formation of aligned carbon nanotube field emitters at 400 \({^\circ }\)C. Appl. Phys. Lett. 82(15), 2485–2487 (2003)

    Google Scholar 

  73. L. Delzeit, I. McAninch, B.A. Cruden, D. Hash, B. Chen, J. Han, M. Meyyappan, Growth of multiwall carbon nanotubes in an inductively coupled plasma reactor. J. Appl. Phys. 91(9), 6027–6033 (2002)

    Article  ADS  Google Scholar 

  74. H.S. Kang, H.J. Yoon, C.O. Kim, J.P. Hong, I.T. Han, S.N. Cha, B.K. Song, J.E. Jung, N.S. Lee, J.M. Kim, Low temperature growth of multi-wall carbon nanotubes assisted by mesh potential using a modified plasma enhanced chemical vapor deposition system. Chem. Phys. Lett. 349(3–4), 196–200 (2001)

    Article  ADS  Google Scholar 

  75. V.K. Varadan, J. Xie, Large-scale synthesis of multi-walled carbon nanotubes by microwave CVD. Smart Mater. Struct. 11(4), 610 (2002)

    Article  ADS  Google Scholar 

  76. H. Cui, O. Zhou, B.R. Stoner, Deposition of aligned bamboo-like carbon nanotubes via microwave plasma enhanced chemical vapor deposition. J. Appl. Phys. 88(10), 6072–6074 (2000)

    Article  ADS  Google Scholar 

  77. H. Murakami, M. Hirakawa, C. Tanaka, H. Yamakawa, Field emission from well-aligned, patterned, carbon nanotube emitters. Appl. Phys. Lett. 76(13), 1776–1778 (2000)

    Article  ADS  Google Scholar 

  78. M. Okai, T. Muneyoshi, T. Yaguchi, S. Sasaki, Structure of carbon nanotubes grown by microwave-plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 77(21), 3468–3470 (2000)

    Article  ADS  Google Scholar 

  79. L.C. Qin, D. Zhou, A.R. Krauss, D.M. Gruen, Growing carbon nanotubes by microwave plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 72(26), 3437–3439 (1998)

    Article  ADS  Google Scholar 

  80. H. Boehm, Carbon from carbon monoxide disproportionation on nickel and iron catalysts: Morphological studies and possible growth mechanisms. Carbon 11(6), 583–586 (1973)

    Article  Google Scholar 

  81. R.T.K. Baker, P.S. Harris, R.B. Thomas, R.J. Waite, Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene. J. Catal. 30(1), 86–95 (1973)

    Article  Google Scholar 

  82. L. Huang, B. White, M.Y. Sfeir, M. Huang, H.X. Huang, S. Wind, J. Hone, S. O’Brien, Cobalt ultrathin film catalyzed ethanol chemical vapor deposition of single-walled carbon nanotubes. J. Phys. Chem. B 110(23), 11103–11109 (2006)

    Article  Google Scholar 

  83. Y. Zhang, A. Chang, J. Cao, Q. Wang, W. Kim, Y. Li, N. Morris, E. Yenilmez, J. Kong, H. Dai, Electric-field-directed growth of aligned single-walled carbon nanotubes. Appl. Phys. Lett. 79(19), 3155–3157 (2001)

    Article  ADS  Google Scholar 

  84. Y. Avigal, R. Kalish, Growth of aligned carbon nanotubes by biasing during growth. Appl. Phys. Lett. 78(16), 2291–2293 (2001)

    Article  ADS  Google Scholar 

  85. J.G. Wen, Z.P. Huang, D.Z. Wang, J.H. Chen, S.X. Yang, Z.F. Ren, J.H. Wang, L.E. Calvet, J. Chen, J.F. Klemic, M. Reed, Growth and characterization of aligned carbon nanotubes from patterned nickel nanodots and uniform thin films. J. Mater. Res. 16(11), 3246–3253 (2001)

    Article  ADS  Google Scholar 

  86. V.I. Merkulov, A.V. Melechko, M.A. Guillorn, D.H. Lowndes, M.L. Simpson, Alignment mechanism of carbon nanofibers produced by plasma-enhanced chemical-vapor deposition. Appl. Phys. Lett. 79(18), 2970–2972 (2001)

    Article  ADS  Google Scholar 

  87. Y. Hayashi, T. Negishi, S. Nishino, Growth of well-aligned carbon nanotubes on nickel by hot-filament-assisted DC plasma chemical vapor deposition in a \(\text{ CH}_4\)/\(\text{H}_2\) plasma. J. Vac. Sci. Technol. A 19(4), 1796–1799 (2001)

    Google Scholar 

  88. K. MacKenzie, O. Dunens, A.T. Harris, A review of carbon nanotube purification by microwave assisted acid digestion. Sep. Purif. Technol. 66(2), 209–222 (2009)

    Article  Google Scholar 

  89. X. Song, Y. Fang, A technique of purification process of single-walled carbon nanotubes with air. Spectrochim. Acta A 67(3–4), 1131–1134 (2007)

    ADS  Google Scholar 

  90. T. Guo, P. Nikolaev, A. Thess, D. Colbert, R. Smalley, Catalytic growth of single-walled manotubes by laser vaporization. Chem. Phys. Lett. 243(1–2), 49–54 (1995)

    Article  Google Scholar 

  91. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tománek, J.E. Fischer, R.E. Smalley, Crystalline ropes of metallic carbon nanotubes. Science 273(5274), 483–487 (1996)

    Article  ADS  Google Scholar 

  92. A.G. Nasibulin, P.V. Pikhitsa, H. Jiang, D.P. Brown, A.V. Krasheninnikov, A.S. Anisimov, P. Queipo, A. Moisala, D. Gonzalez, G. Lientschnig, A. Hassanien, S.D. Shandakov, G. Lolli, D.E. Resasco, M. Choi, D. Tománek, E.I. Kauppinen, A novel hybrid carbon material. Nat. Nanotechnol. 2(3), 156–161 (2007)

    Article  ADS  Google Scholar 

  93. Z. Huang, D. Wang, J. Wen, M. Sennett, H. Gibson, Z. Ren, Effect of nickel, iron and cobalt on growth of aligned carbon nanotubes. Appl. Phys. A 74(3), 387–391 (2002)

    Article  ADS  Google Scholar 

  94. S. Amelinckx, X.B. Zhang, D. Bernaerts, X.F. Zhang, V. Ivanov, J.B. Nagy, A formation mechanism for catalytically grown helix-shaped graphite nanotubes. Science 265(5172), 635–639 (1994)

    Article  ADS  Google Scholar 

  95. N. Yoshikawa, T. Asari, N. Kishi, S. Hayashi, T. Sugai, H. Shinohara, An efficient fabrication of vertically aligned carbon nanotubes on flexible aluminum foils by catalyst-supported chemical vapor deposition. Nanotehnology 19(24), 245607 (2008)

    Article  ADS  Google Scholar 

  96. C.-C. Su, S.-H. Chang, Effective growth of vertically aligned carbon nanotube turfs on flexible Al foil. Mater. Lett. 65(17–18), 2700–2702 (2011)

    Article  Google Scholar 

  97. T. Hiraoka, T. Yamada, K. Hata, D.N. Futaba, H. Kurachi, S. Uemura, M. Yumura, S. Iijima, Synthesis of single- and double-walled carbon nanotube forests on conducting metal foils. J. Am. Chem. Soc. 128(41), 13338–13339 (2006)

    Article  Google Scholar 

  98. X. Lepró, M.D. Lima, R.H. Baughman, Spinnable carbon nanotube forests grown on thin, flexible metallic substrates. Carbon 48(12), 3621–3627 (2010)

    Article  Google Scholar 

  99. S.P. Patole, H.-I. Kim, J.-H. Jung, A.S. Patole, H.-J. Kim, I.-T. Han, V.N. Bhoraskar, J.-B. Yoo, The synthesis of vertically-aligned carbon nanotubes on an aluminum foil laminated on stainless steel. Carbon 49, 3522–3528 (2011)

    Article  Google Scholar 

  100. M.K. Tabatabaei, H. Ghafouri fard, J. Koohsorkhi, S. Khatami, S. Mohajerzadeh, Remote and direct plasma regions for low-temperature growth of carbon nanotubes on glass substrates for display applications. J. Phys. D: Appl. Phys. 44(11), 115401 (2011)

    Google Scholar 

  101. T. Nozaki, K. Okazaki, Carbon nanotube synthesis pressure glow discharge: a review. Plasma Processes Polym. 5(4), 301–321 (2008)

    Google Scholar 

  102. T. Nozaki, T. Goto, K. Okazaki, K. Ohnishi, L. Mangolini, J. Heberlein, U. Kortshagen, Deposition of vertically oriented carbon nanofibers in atmospheric pressure radio frequency discharge. J. Appl. Phys. 99(2), 024310-1–024310-7 (2006)

    Google Scholar 

  103. T. Nozaki, K. Ohnishi, K. Okazaki, U. Kortshagen, Fabrication of vertically aligned single-walled carbon nanotubes in atmospheric pressure non-thermal plasma CVD. Carbon 45(2), 364–374 (2007)

    Article  Google Scholar 

  104. T. Nozaki, Y. Kimura, K. Okazaki, Carbon nanotubes deposition in glow barrier discharge enhanced catalytic CVD. J. Phys. D: Appl. Phys. 35(21), 2779–2784 (2002)

    Article  ADS  Google Scholar 

  105. L. Zheng, G. Sun, Z. Zhan, Tuning array morphology for high-strength carbon-nanotube fibers. Small 6(1), 132–137 (2010)

    Article  Google Scholar 

  106. S. Huang, L. Dai, A. Mau, Controlled fabrication of aligned carbon nanotube patterns. Phys. B 323(1–4), 333–335 (2002)

    Google Scholar 

  107. L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J.-M. Bonard, K. Kern, Scanning field emission from patterned carbon nanotube films. Appl. Phys. Lett. 76(15), 2071–2073 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhifeng Ren .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ren, Z., Lan, Y., Wang, Y. (2012). Chemical Vapor Deposition of Carbon Nanotubes. In: Aligned Carbon Nanotubes. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30490-3_4

Download citation

Publish with us

Policies and ethics