Advertisement

Growth Techniques of Carbon Nanotubes

  • Zhifeng Ren
  • Yucheng Lan
  • Yang Wang
Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

Random carbon nanotubes have been synthesized from many methods. Based on the understanding of the growth mechanism from these methods, aligned carbon nanotubes have been in situ grown. Randomly grown carbon nanotubes can also be aligned using ex situ methods. In this chapter we introduce various methods to grow carbon nanotubes. The grown nanotubes are aligned or random during growth.

Keywords

Carbon Nanotubes Chemical Vapor Deposition Anodic Aluminum Oxide Template Chemical Vapor Deposition Method Catalytic Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Y. Saito, M. Inagaki, Optical emission studies on chemical species in an arc flame of fullerene/metallofullerene generator. Jpn. J. Appl. Phys. 32(Part 2, No. 7A), L954–L957 (1993)Google Scholar
  2. 2.
    A. Anders, Cathodic Arcs: From Fractal Spots to Energetic Condensation. Atomic, Optical, and Plasma Physics, (Springer, 2010)Google Scholar
  3. 3.
    S. Iijima, Direct observation of the tetrahedral bonding in graphitized carbon black by high resolution electron microscopy. J. Cryst. Growth 50(3), 675–683 (1980)ADSGoogle Scholar
  4. 4.
    H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, \(\text{C}_{60}\): Buckminsterfullerene. Nature 318, 162–163 (1985)Google Scholar
  5. 5.
    S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)ADSGoogle Scholar
  6. 6.
    T.W. Ebbesen, P.M. Ajayan, Large-scale synthesis of carbon nanotubes. Nature 358(6383), 220–222 (1992)ADSGoogle Scholar
  7. 7.
    S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430), 603–605 (1993)ADSGoogle Scholar
  8. 8.
    D.S. Bethune, C.H. Klang, M.S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363(6430), 605–607 (1993)ADSGoogle Scholar
  9. 9.
    C. Journet, W.K. Maser, P. Bernier, A. Loiseau, M.L. de la Chapelle, S. Lefrant, P. Deniard, R. Leek, J.E. Fischer, Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388, 756–768 (1997)ADSGoogle Scholar
  10. 10.
    P. Chaturvedi, P. Verma, A. Singh, P.K. Chaudhary, Harsh, P.K. Basu, Carbon nanotube - purification and sorting protocol. Defence Sci. J. 58(5), 591–599 (2008)Google Scholar
  11. 11.
    S.K. Pillai, S.S. Ray, M. Moodley, Purification of single-walled carbon nanotubes. J. Nanosci. Nanotechnol. 7(9), 3011–3047 (2007)Google Scholar
  12. 12.
    S.K. Pillai, S.S. Ray, M. Moodley, Purification of multi-walled carbon nanotubes. J. Nanosci. Nanotechnol. 8(12), 6187–6207 (2008)Google Scholar
  13. 13.
    M. Daenen, R.D. de Fouw, B. Hamers, P.G.A. Janssen, K. Schouteden, M.A.J. Veld, The Wondrous World of Carbon Nanotubes: A Review of Current Carbon Nanotube Technologies, Technical Report, (Eindhoven University of Technology, Eindhoven, 2003)Google Scholar
  14. 14.
    K. MacKenzie, O. Dunens, A.T. Harris, A review of carbon nanotube purification by microwave assisted acid digestion. Sep. Purif. Technol. 66(2), 209–222 (2009)Google Scholar
  15. 15.
    X. Song, Y. Fang, A technique of purification process of single-walled carbon nanotubes with air. Spectrochim. Acta A 67(3–4), 1131–1134 (2007)ADSGoogle Scholar
  16. 16.
    M. Ushio, D. Fan, M. Tanaka, A method of estimating the space-charge voltage drop for thermionic arc cathodes. J. Phys. D: Appl. Phys. 27(3), 561–566 (1994)ADSGoogle Scholar
  17. 17.
    E.G. Gamaly, Growth mechanism of carbon nanotubes, in Carbon Nanotubes: Preparation and Properties, ed. by T.W. Ebbesen. (Chemical Rubber, Boca Raton, 1997), pp. 164–190Google Scholar
  18. 18.
    S. Farhat, C.D. Scott, Review of the arc process modeling for fullerene and nanotube production. J. Nanosci. Nanotechnol. 6(5), 1189–1210 (2006)Google Scholar
  19. 19.
    B. Ahmad, M. Ahmad, J. Akhter, N. Ahmad, Formation of diamond-like carbon balls, self aligned and nonaligned nanotubes at the tip of the cathode during the synthesis of fullerenes in the DC arc discharge experiment. Mater. Lett. 59(12), 1585–1588 (2005)Google Scholar
  20. 20.
    R. Ismagilov, P. Shvets, A. Kharin, A. Obraztsov, Noncatalytic synthesis of carbon nanotubes by chemical vapor deposition. Crystallogr. Rep. 56(2), 310–314 (2011)ADSGoogle Scholar
  21. 21.
    A.P. Moravsky, E.M. Wexler, R.O. Loutfy, Growth of carbon nanotubes by arc discharge and laser ablation, in Carbon Nanotubes: Science and Applications, ed. by M. Meyyappan. (CRC Press, Boca Raton, 2004) pp. 80–121Google Scholar
  22. 22.
    P.J.F. Harris, Solid state growth mechanisms for carbon nanotubes. Carbon 45(2), 229–239 (2007)Google Scholar
  23. 23.
    B. Yakobson, R. Smalley, Fullerene nanotubes: C1,000,000 and beyond. Am. Sci. 85, 324–337 (1997)ADSGoogle Scholar
  24. 24.
    T. Guo, P. Nikolaev, A. Thess, D. Colbert, R. Smalley, Catalytic growth of single-walled manotubes by laser vaporization. Chem. Phys. Lett. 243(1–2), 49–54 (1995)Google Scholar
  25. 25.
    T. Guo, P. Nikolaev, A.G. Rinzler, D. Tomanek, D.T. Colbert, R.E. Smalley, Self-assembly of tubular fullerenes. J. Phys. Chem. 99(27), 10694–10697 (1995)Google Scholar
  26. 26.
    C. Scott, S. Arepalli, P. Nikolaev, R. Smalley, Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process. Appl. Phys. A: Mater. 72, 573–580 (2001)ADSGoogle Scholar
  27. 27.
    A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tománek, J.E. Fischer, R.E. Smalley, Crystalline ropes of metallic carbon nanotubes. Science 273(5274), 483–487 (1996)ADSGoogle Scholar
  28. 28.
    Z.Y. Kosakovskaya, L.A. Chemozatonskii, E.A. Fedorov, Nanofilament carbon structure. JETP Lett. 56(1), 26–30 (1992)ADSGoogle Scholar
  29. 29.
    M. Ge, K. Sattler, Vapor-condensation generation and STM analysis of fullerene tubes. Science 260(5107), 515–518 (1993)ADSGoogle Scholar
  30. 30.
    W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao, G. Wang, Large-scale synthesis of aligned carbon nanotubes. Science 274(5293), 1701–1703 (1996)ADSGoogle Scholar
  31. 31.
    P.L. Walker, J.F. Rakszawski, G.R. Imperial, Carbon formation from carbon monoxide-hydrogen mixtures over iron catalysts. I. properties of carbon formed. J. Phys. Chem. B 63(2), 133–140 (1959)Google Scholar
  32. 32.
    M. José-Yacamán, M. Miki-Yoshida, L. Rendón, J.G. Santiesteban, Catalytic growth of carbon microtubules with fullerene structure. Appl. Phys. Lett. 62(6), 657–659 (1993)ADSGoogle Scholar
  33. 33.
    Z.W. Pan, S.S. Xie, B.H. Chang, C.Y. Wang, L. Lu, W. Liu, W.Y. Zhou, W.Z. Li, L.X. Qian, Very long carbon nanotubes. Nature 394(6694), 631–632 (1998)ADSGoogle Scholar
  34. 34.
    S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H. Dai, Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283(5401), 512–514 (1999)ADSGoogle Scholar
  35. 35.
    M. Terrones, N. Grobert, J. Olivares, J.P. Zhang, H. Terrones, K. Kordatos, W.K. Hsu, J.P. Hare, P.D. Townsend, K. Prassides, A.K. Cheetham, H.W. Kroto, D.R.M. Walton, Controlled production of aligned-nanotube bundles. Nature 388(6637), 52–55 (1997)ADSGoogle Scholar
  36. 36.
    Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegal, P.N. Provencio, Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282, 1105–1107 (1998)ADSGoogle Scholar
  37. 37.
    A. Peigney, P. Coquay, E. Flahaut, R.E. Vandenberghe, E. De Grave, C. Laurent, A study of the formation of single- and double-walled carbon nanotubes by a CVD method. J. Phys. Chem. B 105(40), 9699–9710 (2001)Google Scholar
  38. 38.
    H.W. Zhu, C.L. Xu, D.H. Wu, B.Q. Wei, R. Vajtai, P.M. Ajayan, Direct synthesis of long single-walled carbon nanotube strands. Science 296(5569), 884–886 (2002)ADSGoogle Scholar
  39. 39.
    Z.F. Ren, Z.P. Huang, D.Z. Wang, J.G. Wen, J.W. Xu, J.H. Wang, L.E. Calvet, J. Chen, J.F. Klemic, M.A. Reed, Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot. Appl. Phys. Lett. 75(8), 1086–1088 (1999)ADSGoogle Scholar
  40. 40.
    Y.C. Choi, Y.M. Shin, S.C. Lim, D.J. Bae, Y.H. Lee, B.S. Lee, D.C. Chung, Effect of surface morphology of Ni thin film on the growth of aligned carbon nanotubes by microwave plasma-enhanced chemical vapor deposition. J. Appl. Phys. 88, 4898–4903 (2000)ADSGoogle Scholar
  41. 41.
    H.T. Ng, M.L. Foo, A.P. Fang, J. Li, G.Q. Xu, S. Jaenicke, L. Chan, S.F.Y. Li, Soft-lithography-mediated chemical vapor deposition of architectured carbon nanotube networks on elastomeric polymer. Langmuir 18(1), 1–5 (2002)Google Scholar
  42. 42.
    Z.P. Huang, J.W. Xu, Z.F. Ren, J.H. Wang, M.P. Siegal, P.N. Provencio, Growth of highly oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition. Appl. Phys. Lett. 73(26), 3845–3847 (1998)ADSGoogle Scholar
  43. 43.
    Z.P. Huang, D.L. Carnahan, J. Rybczynski, M. Giersig, M. Sennett, D.Z. Wang, J.G. Wen, K. Kempa, Z.F. Ren, Growth of large periodic arrays of carbon nanotubes. Appl. Phys. Lett. 82(3), 460–462 (2003)ADSGoogle Scholar
  44. 44.
    M.W. Li, Z. Hu, X.Z. Wang, Q. Wu, Y. Chen, Low-temperature synthesis of carbon nanotubes using corona discharge plasma reaction at atmospheric pressure. J. Mater. Sci. Lett. 22(17), 1223–1224 (2003)Google Scholar
  45. 45.
    J. Li, C. Papadopoulos, J.M. Xu, M. Moskovits, Highly-ordered carbon nanotube arrays for electronics applications. Appl. Phys. Lett. 75(3), 367–369 (1999)ADSGoogle Scholar
  46. 46.
    J. Li, C. Papadopoulos, J. Xu, Nanoelectronics: Growing Y-junction carbon nanotubes. Nature 402(6759), 253–254 (1999)ADSGoogle Scholar
  47. 47.
    Y.Y. Wei, G. Eres, V.I. Merkulov, D.H. Lowndes, Effect of catalyst film thickness on carbon nanotube growth by selective area chemical vapor deposition. Appl. Phys. Lett. 78(10), 1394–1396 (2001)ADSGoogle Scholar
  48. 48.
    X. Xu, G.R. Brandes, A method for fabricating large-area, patterned, carbon nanotube field emitters. Appl. Phys. Lett. 74(17), 2549–2551 (1999)ADSGoogle Scholar
  49. 49.
    E.T. Thostenson, W.Z. Li, D.Z. Wang, Z.F. Ren, T.W. Chou, Carbon nanotube/carbon fiber hybrid multiscale composites. J. Appl. Phys. 91(9), 6034–6037 (2002)ADSGoogle Scholar
  50. 50.
    W.Z. Li, D.Z. Wang, S.X. Yang, J.G. Wen, Z.F. Ren, Controlled growth of carbon nanotubes on graphite foil by chemical vapor deposition. Chem. Phys. Lett. 335, 141–149 (2001)ADSGoogle Scholar
  51. 51.
    A.V. Melechko, V.I. Merkulov, T.E. McKnight, M.A. Guillorn, K.L. Klein, D.H. Lowndes, M.L. Simpson, Vertically aligned carbon nanofibers and related structures: controlled synthesis and directed assembly. J. Appl. Phys. 97(4), 041301/1–041301/39 (2005)Google Scholar
  52. 52.
    A. Oberlin, M. Endo, T. Koyama, Filamentous growth of carbon through benzene decomposition. J. Cryst. Growth 32(3), 335–349 (1976)ADSGoogle Scholar
  53. 53.
    S. Amelinckx, X.B. Zhang, D. Bernaerts, X.F. Zhang, V. Ivanov, J.B. Nagy, A formation mechanism for catalytically grown helix-shaped graphite nanotubes. Science 265(5172), 635–639 (1994)ADSGoogle Scholar
  54. 54.
    J.B. Nagy, G. Bister, A. Fonseca, D. Méhn, Z. Kónya, I. Kiricsi, Z.E. Horváth, L.P. Biró, On the growth mechanism of single-walled carbon nanotubes by catalytic carbon vapor deposition on supported metal catalysts. J. Nanosci. Nanotechnol. 4(4), 4326–345 (2004)Google Scholar
  55. 55.
    S. Helveg, C. López-Cartes, J. Sehested, P.L. Hansen, B.S. Clausen, J.R. Rostrup-Nielsen, F. Abild-Pedersen, J.K. Nórskov, Atomic-scale imaging of carbon nanofibre growth. Nature 427, 426–429 (2004)ADSGoogle Scholar
  56. 56.
    H. Zhu, K. Suenaga, A. Hashimoto, K. Urita, K. Hata, S. Iijima, Atomic-resolution imaging of the nucleation points of single-walled carbon nanotubes. Small 1(12), 1180–1183 (2005)Google Scholar
  57. 57.
    F. Ding, K. Bolton, A. Rosén, Nucleation and growth of single-walled carbon nanotubes: A molecular dynamics study. J. Phys. Chem. B 108(45), 17369–17377 (2004)Google Scholar
  58. 58.
    R.T.K. Baker, M.A. Barber, P.S. Harris, F.S. Feates, R.J. Waite, Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene. J. Catal. 26(1), 51–62 (1972)Google Scholar
  59. 59.
    M. Audier, M. Coulon, Kinetic and microscopic aspects of catalytic carbon growth. Carbon 23(3), 317–323 (1985)Google Scholar
  60. 60.
    M. Endo, K. Takeuchi, K. Kobori, K. Takahashi, H.W. Kroto, A. Sarkar, Pyrolytic carbon nanotubes from vapor-grown carbon fibers. Carbon 33(7), 873–881 (1995)Google Scholar
  61. 61.
    J.-C. Charlier, A. De Vita, X. Blase, R. Car, Microscopic growth mechanisms for carbon nanotubes. Science 275(5300), 647–649 (1997)Google Scholar
  62. 62.
    M. Yudasaka, R. Kikuchi, Y. Ohki, E. Ota, S. Yoshimura, Behavior of Ni in carbon nanotube nucleation. Appl. Phys. Lett. 70(14), 1817–1818 (1997)ADSGoogle Scholar
  63. 63.
    J.C. Charlier, S. Iijima, Growth mechanisms of carbon nanotubes. in Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, vol. 80, ed. by M.S. Dresselhaus, G. Dresselhaus, P. Avouris. Topics in Applied Physics, (Springer, Berlin, 2001), pp. 55–81Google Scholar
  64. 64.
    T.W. Ebbesen (ed.), Carbon Nanotubes: Preparation and Properties. (Chemical Rubber, Boca Raton, 1997)Google Scholar
  65. 65.
    R.T.K. Baker, P.S. Harris, R.B. Thomas, R.J. Waite, Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene. J. Catal. 30(1), 86–95 (1973)Google Scholar
  66. 66.
    R.T.K. Baker, R.J. Waite, Formation of carbonaceous deposits from the platinum-iron catalyzed decomposition of acetylene. J. Catal. 37(1), 101–105 (1975)Google Scholar
  67. 67.
    R.T.K. Baker, P.S. Harris, Chemistry and Physics of Carbon, (Dekker, New York, 1978)Google Scholar
  68. 68.
    R.T.K. Baker, J.J. Chludzinski, Filamentous carbon growth on nickel-iron surfaces: The effect of various oxide additives. J. Catal. 64(2), 464–478 (1980)Google Scholar
  69. 69.
    R. Baker, Catalytic growth of carbon filaments. Carbon 27(3), 315–323 (1989)Google Scholar
  70. 70.
    T. Baird, J. Fryer, B. Grant, Carbon formation on iron and nickel foils by hydrocarbon pyrolysis-reactions at \(700\) \(^\circ \)C. Carbon 12(5), 591–602 (1974)Google Scholar
  71. 71.
    G.G. Tibbetts, Carbon fibers produced by pyrolysis of natural gas in stainless steel tubes. Appl. Phys. Lett. 42(8), 666–668 (1983)ADSGoogle Scholar
  72. 72.
    J. Bradley, G. Tibbetts, Improved yield of carbon fibers by pyrolysis of natural gas in stainless steel tubes. Carbon 23(4), 423–430 (1985)Google Scholar
  73. 73.
    H. Yoshida, S. Takeda, T. Uchiyama, H. Kohno, Y. Homma, Atomic-scale in-situ observation of carbon nanotube growth from solid state iron carbide nanoparticles. Nano Lett. 8(7), 2082–2086 (2008)ADSGoogle Scholar
  74. 74.
    M. Meyyappan (ed.) Carbon Nanotubes: Science and Applications. (CRC Press, Boca Raton, 2004)Google Scholar
  75. 75.
    K. Byrappa, T. Adschiri, Hydrothermal technology for nanotechnology. Prog. Cryst. Growth Charact. Mater. 53(2), 117–166 (2007)Google Scholar
  76. 76.
    B. Poudel, W.Z. Wang, D.Z. Wang, J.Y. Huang, Z.F. Ren, Shape evolution of lead telluride and selenide nanostructures under different hydrothermal synthesis conditions. J. Nanosci. Nanotechnol. 6(4), 1050–1053 (2006)Google Scholar
  77. 77.
    Y. Lan, X. Chen, Y. Cao, Y. Xu, L. Xun, T. Xu, J. Liang, Low-temperature synthesis and photoluminescence of AlN. J. Cryst. Growth 207(3), 247–250 (1999)ADSGoogle Scholar
  78. 78.
    X. Chen, Y. Cao, Y. Lan, X. Xu, J. Li, K. Lu, P. Jiang, T. Xu, Z. Bai, Y. Yu, J. Liang, Synthesis and structure of nanocrystal-assembled bulk GaN. J. Cryst. Growth 209(1), 208–212 (2000)ADSGoogle Scholar
  79. 79.
    G.C. Kennedy, Pressure-volume-temperature relations in water at elevated temperatures and pressures. Am. J. Sci. 248(8), 540–564 (1950)Google Scholar
  80. 80.
    W. Wang, B. Poudel, D.Z. Wang, Z.F. Ren, Synthesis of multiwalled carbon nanotubes through a modified Wolff-Kishner reduction process. J. Am. Chem. Soc. 127(51), 18018–18019 (2005)Google Scholar
  81. 81.
    M. Motiei, Y. Rosenfeld Hacohen, J. Calderon-Moreno, A. Gedanken, Preparing carbon nanotubes and nested fullerenes from supercritical \(\text{CO}_2\) by a chemical reaction. J. Am. Chem. Soc. 123(35), 8624–8625 (2001)Google Scholar
  82. 82.
    J.M. Calderon Moreno, M. Yoshimura, Hydrothermal processing of high-quality multiwall nanotubes from amorphous carbon. J. Am. Chem. Soc. 123(4), 741–742 (2001)Google Scholar
  83. 83.
    Y. Gogotsi, J.A. Libera, M. Yoshimura, Hydrothermal synthesis of multiwall carbon nanotubes. J. Mater. Res. 15(12), 2591–2594 (2000)ADSGoogle Scholar
  84. 84.
    J. Liu, M. Shao, X. Chen, W. Yu, X. Liu, Y. Qian, Large-scale synthesis of carbon nanotubes by an ethanol thermal reduction process. J. Am. Chem. Soc. 125(27), 8088–8089 (2003)Google Scholar
  85. 85.
    D.C. Lee, F.V. Mikulec, B.A. Korgel, Carbon nanotube synthesis in supercritical toluene. J. Am. Chem. Soc. 126(15), 4951–4957 (2004)Google Scholar
  86. 86.
    Y. Jiang, Y. Wu, S. Zhang, C. Xu, W. Yu, Y. Xie, Y. Qian, A catalytic-assembly solvothermal route to multiwall carbon nanotubes at a moderate temperature. J. Am. Chem. Soc. 122(49), 12383–12384 (2000)Google Scholar
  87. 87.
    W. Wang, S. Kunwar, J.Y. Huang, D.Z. Wang, Z.F. Ren, Low temperature solvothermal synthesis of multiwall carbon nanotubes. Nanotechnology 16(1), 21–23 (2005)ADSGoogle Scholar
  88. 88.
    J.K. Vohs, J.J. Brege, J.E. Raymond, A.E. Brown, G.L. Williams, B.D. Fahlman, Low-temperature growth of carbon nanotubes from the catalytic decomposition of carbon tetrachloride. J. Am. Chem. Soc. 126, 9936–9937 (Aug. 2004)Google Scholar
  89. 89.
    S. Liu, J. Yue, R.J. Wehmschulte, Large thick flattened carbon nanotubes. Nano Lett. 2(12), 1439–1442 (2002)ADSGoogle Scholar
  90. 90.
    W. Wang, J. Huang, D. Wang, Z. Ren, Low-temperature hydrothermal synthesis of multiwall carbon nanotubes. Carbon 43(6), 1328–1331 (2005)Google Scholar
  91. 91.
    S.S. Swamya, J.M. Calderon-Morenoa, M. Yoshimuraa, Stability of single-wall carbon nanotubes under hydrothermal conditions. J. Mater. Res. 17(4), 734–737 (2002)ADSGoogle Scholar
  92. 92.
    J.-Y. Chang, B. Lo, M. Jeng, S.-H. Tzing, Y.-C. Ling, Morphological variation of multiwall carbon nanotubes in supercritical water oxidation. Appl. Phys. Lett. 85(13), 2613–2615 (2004)ADSGoogle Scholar
  93. 93.
    Z. Wen, Q. Wang, J. Li, Template synthesis of aligned carbon nanotube arrays using glucose as a carbon source: Pt decoration of inner and outer nanotube surfaces for fuel-cell catalysts. Adv. Funct. Mater. 18(6), 959–964 (2008)Google Scholar
  94. 94.
    W.R. Davis, R.J. Slawson, G.R. Rigby, An unusual form of carbon. Nature 171, 756–756 (1953)ADSGoogle Scholar
  95. 95.
    W. Hu, D. Gong, Z. Chen, L. Yuan, K. Saito, C.A. Grimes, P. Kichambare, Growth of well-aligned carbon nanotube arrays on silicon substrates using porous alumina film as a nanotemplate. Appl. Phys. Lett. 79(19), 3083–3085 (2001)ADSGoogle Scholar
  96. 96.
    L. Yuan, K. Saito, W. Hu, Z. Chen, Ethylene flame synthesis of well-aligned multi-walled carbon nanotubes. Chem. Phys. Lett. 346(1–2), 23–28 (2001)ADSGoogle Scholar
  97. 97.
    M. Reibold, P. Paufler, A.A. Levin, W. Kochmann, N. Patzke, D.C. Meyer, Materials: Carbon nanotubes in an ancient damascus sabre. Nature 444(7117), 286–286 (2006)ADSGoogle Scholar
  98. 98.
    L. Yuan, K. Saito, C. Pan, F.A. Williams, A.S. Gordon, Nanotubes from methane flames. Chem. Phys. Lett. 340(3–4), 237–241 (2001)ADSGoogle Scholar
  99. 99.
    M.J. Height, J.B. Howard, J.W. Tester, J.B.V. Sande, Flame synthesis of single-walled carbon nanotubes. Carbon 42(11), 2295–2307 (2004)Google Scholar
  100. 100.
    M.D. Diener, N. Nichelson, J.M. Alford, Synthesis of single-walled carbon nanotubes in flames. J. Phys. Chem. B 104(41), 9615–9620 (2000)Google Scholar
  101. 101.
    L. Yuan, T. Li, K. Saito, Growth mechanism of carbon nanotubes in methane diffusion flames. Carbon 41(10), 1889–1896 (2003)Google Scholar
  102. 102.
    R.L. Vander Wal, G.M. Berger, L.J. Hall, Single-walled carbon nanotube synthesis via a multi-stage flame configuration. J. Phys. Chem. B 106, 3564–3567 (2002)Google Scholar
  103. 103.
    W. Merchan-Merchan, A. Saveliev, L.A. Kennedy, A. Fridman, Formation of carbon nanotubes in counter-flow, oxy-methane diffusion flames without catalysts. Chem. Phys. Lett. 354(1–2), 20–24 (2002)ADSGoogle Scholar
  104. 104.
    L.V. Radushkevich, V.M. Lukyanovich, About the carbon structure, thermal CO decomposition on metal contact synthesized. J. Phys. Chem. Russia 26, 88–95 (1952)Google Scholar
  105. 105.
    H. Boehm, Carbon from carbon monoxide disproportionation on nickel and iron catalysts: Morphological studies and possible growth mechanisms. Carbon 11(6), 583–586 (1973)Google Scholar
  106. 106.
    H. Dai, A.G. Rinzler, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smalley, Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chem. Phys. Lett. 260(3–4), 471–475 (1996)ADSGoogle Scholar
  107. 107.
    P. Nikolaev, M.J. Bronikowski, R.K. Bradley, F. Rohmund, D.T. Colbert, K.A. Smith, R.E. Smalley, Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem. Phys. Lett. 313(1–2), 91–97 (1999)ADSGoogle Scholar
  108. 108.
    P. Nikolaev, Gas-phase production of single-walled carbon nanotubes from carbon monoxide: A review of the HiPco process. J. Nanosci. Nanotechnol. 4(4), 307–316 (2004)MathSciNetGoogle Scholar
  109. 109.
    T.V. Hughes, C.R. Chambers, Manufacture of carbon filaments”, in U.S. Patent 000405480, 1889Google Scholar
  110. 110.
    M.I. Ionescu, Y. Zhang, R. Li, X. Sun, H. Abou-Rachid, L.-S. Lussier, Hydrogen-free spray pyrolysis chemical vapor deposition method for the carbon nanotube growth: Parametric studies. Appl. Surf. Sci. 257(15), 6843–6849 (2011)ADSGoogle Scholar
  111. 111.
    W.K. Hsu, J. Hare, M. Terrones, H. Kroto, D.R. Walton, P.J. Harris, Condensed-phase nanotubes. Nature 377(6551), 687–687 (1995)ADSGoogle Scholar
  112. 112.
    W. Hsu, M. Terrones, J. Hare, H. Terrones, H. Kroto, D. Walton, Electrolytic formation of carbon nanostructures. Chem. Phys. Lett. 262(1–2), 161–166 (1996)ADSGoogle Scholar
  113. 113.
    W.K. Hsu, J. Li, H. Terrones, M. Terrones, N. Grobert, Y.Q. Zhu, S. Trasobares, J.P. Hare, C.J. Pickett, H.W. Kroto, D.R.M. Walton, Electrochemical production of low-melting metal nanowires. Chem. Phys. Lett. 301(1–2), 159–166 (1999)ADSGoogle Scholar
  114. 114.
    G.Z. Chen, I. Kinloch, M.S.P. Shaffer, D.J. Fray, A.H. Windle, Electrochemical investigation of the formation of carbon nanotubes in molten salts. High Temp. Mater. Process. 2(4), 459–469 (1998)Google Scholar
  115. 115.
    M. Terrones, Science and technology of the twenty-first century: Synthesis, properties, and applications of carbon nanotubes. Annu. Rev. Mater. Res. 33, 419–501 (2003)ADSGoogle Scholar
  116. 116.
    H. Dai, Carbon nanotubes: Opportunities and challenges. Surf. Sci. 500(1–3), 218–241 (2002)ADSGoogle Scholar
  117. 117.
    H.J. Dai, Nanotube growth and characterization, in Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, vol. 80, ed. by M.S. Dresselhaus, G. Dresselhaus, P. Avouris, Topics in Applied Physics, (Springer, Berlin, 2001), pp. 29–53Google Scholar
  118. 118.
    D. Laplaze, P. Bernier, W. Maser, G. Flamant, T. Guillard, A. Loiseau, Carbon nanotubes: The solar approach. Carbon 36(5–6), 685–688 (1998)Google Scholar
  119. 119.
    L. Alvarez, T. Guillard, J. Sauvajol, G. Flamant, D. Laplaze, Solar production of single-wall carbon nanotubes: growth mechanisms studied by electron microscopy and raman spectroscopy. Appl. Phys. A: Mater. Sci. Process. 70(2), 169–173 (2000)ADSGoogle Scholar
  120. 120.
    C. Baddour, C. Briens, Carbon nanotube synthesis: a review. Int. J. Chem. Reactor Eng. 3, R3 (2005)Google Scholar
  121. 121.
    N. Bajwa, X. S. Li, P.M. Ajayan, R. Vajtai, Mechanisms for catalytic CVD growth of multiwalled carbon nanotubes. J. Nanosci. Nanotechnol. 8(11), 6054–6064 (2008)Google Scholar
  122. 122.
    Q. Zhang, J.-Q. Huang, M.-Q. Zhao, W.-Z. Qian, F. Wei, Carbon nanotube mass production: Principles and processes. ChemSusChem 4, 864–889 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of PhysicsBoston CollegeChestnut HillUSA
  2. 2.Department of PhysicsBoston CollegeChestnut HillUSA
  3. 3.Institute for Advanced Materials, Academy of Advanced OptoelectronicsSouth China Normal UniversityGuangzhouPeople’s Republic of China

Personalised recommendations