Carbon Nanotubes

Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

The carbon atoms in a carbon nanotube (CNT) are bonded trigonally in a curved sheet (graphite layer) that forms a hollow cylinder in nanoscale, similar to that in other fullerenes. The length of CNTs may range from less than a micron to several millimeters or even centimeters. Their unique nanostructures result in many extraordinary properties such as high tensile strength, high electrical and thermal conductivities, high ductility, high thermal and chemical stability, making them suitable for various applications as discussed in Chapter 8: Properties and Applications of Aligned Carbon Nanotube Arrays and Chapter 9 : Potential Applications of Carbon Nanotube Arrays. In this chapter, we review the history and structures of carbon nanotubes.

Keywords

Carbon Nanotubes Carbon Nanofibers Graphite Layer Anodize Aluminum Oxide Template Chemical Vapor Deposition Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    B. Rand, S.P. Appleyard, M.F. Yardim (eds.) Design and Control of Structure of Advanced Carbon Materials for Enhanced Performance. NATO Science Series E: applied sciences, vol. 374 (Kluwer Academic Publishers, Dordrecht, 2001)Google Scholar
  2. 2.
    L.P. Biró, C.A. Bernardo, G.G. Tibbetts, P. Lambin (eds.) Carbon Filaments and Nanotubes: common origins, differing applications?. NATO Science Series E: applied sciences, vol. 372 (Kluwer Academic Publishers, Dordrecht, 2001)Google Scholar
  3. 3.
    S. Saito, A. Zettl (eds.) Carbon Nanotubes: quantum cylinders of graphene. Contemporary Concepts of Condensed Matter Science (Elsevier, Netherlands, 2008)Google Scholar
  4. 4.
    S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)Google Scholar
  5. 5.
    T.V. Hughes, C.R. Chambers, Manufacture of carbon filaments, U.S. Patent 000405480, 1889Google Scholar
  6. 6.
    P. Schützenberger, L. Schützenberger, Sur quelques faits relatifs à l’histoire du carbone. C. R. Acad. Sci. Paris 111, 774–778 (1890)Google Scholar
  7. 7.
    C. Pélabon, H. Pélabon, Sur une variétë de carbone filamenteux. C. R. Acad. Sci. Paris 137, 706–708 (1903)Google Scholar
  8. 8.
    L.V. Radushkevich, V.M. Lukyanovich, About the carbon structure, thermal CO decomposition on metal contact synthesized. J. Phys. Chem. Russia 26, 88–95 (1952)Google Scholar
  9. 9.
    M. Hillert, N. Lange, The structure of graphite filaments. Z. Kristallogr. 111, 24–34 (1958)Google Scholar
  10. 10.
    A. Oberlin, M. Endo, T. Koyama, Filamentous growth of carbon through benzene decomposition. J. Cryst. Growth 32(3), 335–349 (1976)Google Scholar
  11. 11.
    J. Abrahamson, P.G. Wiles, B.L. Rhoades, Structure of carbon fibers found on carbon arc anodes. in 14th Biennial Conference on Carbon American Carbon Society, University Park, PA, June 1979Google Scholar
  12. 12.
    J. Abrahamson, P. Wiles, B. Rhoades, Structure of carbon fibers found on carbon arc anodes. Carbon 37(11), 1873–1874 (1999)Google Scholar
  13. 13.
    H.G. Tennent, Carbon fibrils, method for producing same and compositions containing same. U.S. Patent 4663230 (Kennett Square, PA, 1987)Google Scholar
  14. 14.
    G.E. Scuseria, Negative curvature and hyperfullerenes. Chem. Phys. Lett. 195(5–6), 534–536 (1992)Google Scholar
  15. 15.
    J.W. Mintmire, B.I. Dunlap, C.T. White, Are fullerene tubules metallic? Phys. Rev. Lett. 68(5), 631–634 (1992)Google Scholar
  16. 16.
    N. Hamada, S.-I. Sawada, A. Oshiyama, New one-dimensional conductors: graphitic microtubules. Phys. Rev. Lett. 68(10), 1579–1581 (1992)Google Scholar
  17. 17.
    R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Electronic structure of graphene tubules based on \(\text{C}_{60}\). Phys. Rev. B 46(3), 1804–1811 (1992)Google Scholar
  18. 18.
    S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430), 603–605 (1993)Google Scholar
  19. 19.
    D.S. Bethune, C.H. Klang, M.S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363(6430), 605–607 (1993)Google Scholar
  20. 20.
    J.Q. Hu, Y. Bando, F.F. Xu, Y.B. Li, J.H. Zhan, J.Y. Xu, D. Golberg, Growth and field-emission properties of crystalline, thin-walled carbon microtubes. Adv. Mater. 16(2), 153–156 (2004)Google Scholar
  21. 21.
    A.G. Nasibulin, A.S. Anisimov, P.V. Pikhitsa, H. Jiang, D.P. Brown, M. Choi, E.I. Kauppinen, Investigations of nanobud formation. Chem. Phys. Lett. 446(1–3), 109–114 (2007)Google Scholar
  22. 22.
    M. Monthioux, V.L. Kuznetsov, Who should be given the credit for the discovery of carbon nanotubes? Carbon 44(9), 1621–1623 (2006)Google Scholar
  23. 23.
    M. Reibold, P. Paufler, A.A. Levin, W. Kochmann, N. Patzke, D.C. Meyer, Materials: carbon nanotubes in an ancient damascus sabre. Nature 444(7117), 286–286 (2006)Google Scholar
  24. 24.
    A. Oberlin, M. Endo, T. Koyama, High resolution electron microscope observations of graphitized carbon fibers. Carbon 14(2), 133–135 (1976)Google Scholar
  25. 25.
    H. Boehm, Carbon from carbon monoxide disproportionation on nickel and iron catalysts: morphological studies and possible growth mechanisms. Carbon 11(6), 583–586 (1973)Google Scholar
  26. 26.
    H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, \(\text{C}_{60}\): Buckminsterfullerene. Nature 318, 162–163 (1985)Google Scholar
  27. 27.
    J.A.E. Gibson, Early nanotubes? Nature 359(6394), 369–369 (1992)Google Scholar
  28. 28.
    H.P. Boehm, The first observation of carbon nanotubes. Carbon 35(4), 581–584 (1997)Google Scholar
  29. 29.
    X.H. Chen, C.S. Chen, Q. Chen, F.Q. Cheng, G. Zhang, Z.Z. Chen, Non-destructive purification of multi-walled carbon nanotubes produced by catalyzed CVD. Mater. Lett. 57(3), 734–738 (2002)Google Scholar
  30. 30.
    P. Chaturvedi, P. Verma, A. Singh, P.K. Chaudhary, P.K. Harsh, P.K. Basu, Carbon nanotube—purification and sorting protocols, Defence Sci. J. 58(5), 591–599, 2008Google Scholar
  31. 31.
    K. MacKenzie, O. Dunens, A.T. Harris, A review of carbon nanotube purification by microwave assisted acid digestion. Sep. Purif. Technol. 66(2), 209–222 (2009)Google Scholar
  32. 32.
    S.K. Pillai, S.S. Ray, M. Moodley, Purification of single-walled carbon nanotubes. J. Nanosci. Nanotechnol. 7(9), 3011–3047 (2007)Google Scholar
  33. 33.
    S.K. Pillai, S.S. Ray, M. Moodley, Purification of multi-walled carbon nanotubes. J. Nanosci. Nanotechnol. 8(12), 6187–6207 (2008)Google Scholar
  34. 34.
    X. Song, Y. Fang, A technique of purification process of single-walled carbon nanotubes with air. Spectrochim. Acta A 67(3–4), 1131–1134 (2007)Google Scholar
  35. 35.
    T. Guo, P. Nikolaev, A. Thess, D. Colbert, R. Smalley, Catalytic growth of single-walled manotubes by laser vaporization. Chem. Phys. Lett. 243(1–2), 49–54 (1995)Google Scholar
  36. 36.
    A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tománek, J.E. Fischer, R.E. Smalley, Crystalline ropes of metallic carbon nanotubes. Science 273(5274), 483–487 (1996)Google Scholar
  37. 37.
    J. Li, C. Papadopoulos, J. Xu, Nanoelectronics: growing Y-junction carbon nanotubes. Nature 402(6759), 253–254 (1999)Google Scholar
  38. 38.
    B.C. Satishkumar, P.J. Thomas, A. Govindaraj, C.N.R. Rao, Y junction carbon nanotubes. Appl. Phys. Lett. 77(16), 2530–2532 (2000)Google Scholar
  39. 39.
    W.Z. Li, J.G. Wen, Z.F. Ren, Straight carbon nanotube Y junctions. Appl. Phys. Lett. 79(12), 1879–1881 (2001)Google Scholar
  40. 40.
    A.G. Nasibulin, P.V. Pikhitsa, H. Jiang, D.P. Brown, A.V. Krasheninnikov, A.S. Anisimov, P. Queipo, A. Moisala, D. Gonzalez, G. Lientschnig, A. Hassanien, S.D. Shandakov, G. Lolli, D.E. Resasco, M. Choi, D. Tománek, E.I. Kauppinen, A novel hybrid carbon material. Nat. Nanotechnol. 2(3), 156–161 (2007)Google Scholar
  41. 41.
    L. Liu, G.Y. Guo, C.S. Jayanthi, S.Y. Wu, Colossal paramagnetic moments in metallic carbon nanotori. Phys. Rev. Lett. 88, 217206 (2002)Google Scholar
  42. 42.
    W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao, G. Wang, Large-scale synthesis of aligned carbon nanotubes. Science 274(5293), 1701–1703 (1996)Google Scholar
  43. 43.
    M. Terrones, N. Grobert, J. Olivares, J.P. Zhang, H. Terrones, K. Kordatos, W.K. Hsu, J.P. Hare, P.D. Townsend, K. Prassides, A.K. Cheetham, H.W. Kroto, D.R.M. Walton, Controlled production of aligned-nanotube bundles. Nature 388(6637), 52–55 (1997)Google Scholar
  44. 44.
    Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegal, P.N. Provencio, Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282, 1105–1107 (1998)Google Scholar
  45. 45.
    Z.F. Ren, Z.P. Huang, D.Z. Wang, J.G. Wen, J.W. Xu, J.H. Wang, L.E. Calvet, J. Chen, J.F. Klemic, M.A. Reed, Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot. Appl. Phys. Lett. 75(8), 1086–1088 (1999)Google Scholar
  46. 46.
    Z.P. Huang, D.L. Carnahan, J. Rybczynski, M. Giersig, M. Sennett, D.Z. Wang, J.G. Wen, K. Kempa, Z.F. Ren, Growth of large periodic arrays of carbon nanotubes. Appl. Phys. Lett. 82(3), 460–462 (2003)Google Scholar
  47. 47.
    K. Kempa, B. Kimball, J. Rybczynski, Z.P. Huang, P.F. Wu, D. Steeves, M. Sennett, M. Giersig, D.V.G.L.N. Rao, D.L. Carnahan, D.Z. Wang, J.Y. Lao, W.Z. Li, Z.F. Ren, Photonic crystals based on periodic arrays of aligned carbon nanotubes. Nano Lett. 3(1), 13–18 (2003)Google Scholar
  48. 48.
    S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H. Dai, Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283(5401), 512–514 (1999)Google Scholar
  49. 49.
    G-Y. Xiong, D. Wang, Z. Ren, Aligned millimeter-long carbon nanotube arrays grown on single crystal magnesia. Carbon 44(5), 969–973 (2006)Google Scholar
  50. 50.
    K. Hata, D.N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima, Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306(5700), 1362–1364 (2004)Google Scholar
  51. 51.
    P.M. Ajayan, O. Stephan, C. Colliex, D. Trauth, Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science 265(5176), 1212–1214 (1994)Google Scholar
  52. 52.
    W.A. de Heer, W.S. Bacsa, A. Châtelain, T. Gerfin, R. Humphrey-Baker, L. Forro, D. Ugarte, Aligned carbon nanotube films: production and optical and electronic properties. Science 268(5212), 845–847 (1995)Google Scholar
  53. 53.
    B.Q. Wei, R. Vajtai, Y. Jung, J. Ward, R. Zhang, G. Ramanath, P.M. Ajayan, Microfabrication technology: organized assembly of carbon nanotubes. Nature 416(6880), 495–496 (2002)Google Scholar
  54. 54.
    S.G. Rao, L. Huang, W. Setyawan, S. Hong, Nanotube electronics: large-scale assembly of carbon nanotubes. Nature 425(6953), 36–37 (2003)Google Scholar
  55. 55.
    M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of Fullerenes and Carbon Nanotubes: their properties and applications (Academic Press, New York, 1996)Google Scholar
  56. 56.
    R. Saito, G. Dresselhaus, M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (World Scientific, Singapore, 1998)Google Scholar
  57. 57.
    P.J.F. Harris, Carbon Nanotubes and Related Structures: new materials for the twenty-first century (Cambridge University Press, Cambridge, 1999)Google Scholar
  58. 58.
    M.S. Dresselhaus, G. Dresselhaus, P. Avouris (eds.), Carbon Nanotubes: synthesis, structure, properties, and applications. Topics in Applied Physics, vol. 80 (Springer, Berlin, 2001)Google Scholar
  59. 59.
    T.W. Ebbesen (ed.), Carbon Nanotubes: preparation and properties (Chemical Rubber, Boca Raton, 1997)Google Scholar
  60. 60.
    K. Tanaka, T. Yamabe, K. Fukui (eds.), The Science and Technology of Carbon Nanotubes (Elsevier, Amsterdam, 1999)Google Scholar
  61. 61.
    C. Hierold (ed.), Carbon Nanotube Devices: properties, modeling, integration and applications. Advanced Micro & Nanosystems, vol. 8 (Wiley-VCH, Weinheim, 2008)Google Scholar
  62. 62.
    M. Meyyappan (ed.), Carbon Nanotubes: Science and Applications (CRC Press, Boca Raton, 2004)Google Scholar
  63. 63.
    S. Reich, C. Thomsen, J. Maultzsch, Carbon Nanotubes: basic concepts and physical properties (Wiley-VCH, Germany, 2004)Google Scholar
  64. 64.
    M.S. Dresselhaus, G. Dresselhaus, R. Saito, Carbon fibers based on \({\rm C}_{60}\) and their symmetry. Phys. Rev. B 45(11), 6234–6242 (1992)Google Scholar
  65. 65.
    P. Delhaés (ed.), Graphite and Precursors (Gordon and Breach Science Publishers, NewYork, 2001)Google Scholar
  66. 66.
    F. Cirkel, C.M. Branch, Graphite: Its Properties, Occurrence, Refining and Uses (Nabu Press, North Carolina, 2010)Google Scholar
  67. 67.
    D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, J.M. Tour, Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876 (2009)Google Scholar
  68. 68.
    L. Jiao, L. Zhang, X. Wang, G. Diankov, H. Dais, Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877–880 (2009)Google Scholar
  69. 69.
    M. Terrones, Materials science: nanotubes unzipped. Nature 458, 845–846 (2009)Google Scholar
  70. 70.
    T.W. Odom, J-L. Huang, P. Kim, C.M. Lieber, Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391(6662), 62–64 (1998)Google Scholar
  71. 71.
    H. Dai, A.G. Rinzler, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smalley, Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chem. Phys. Lett. 260(3–4), 471–475 (1996)Google Scholar
  72. 72.
    M. Audier, M. Coulon, Kinetic and microscopic aspects of catalytic carbon growth. Carbon 23(3), 317–323 (1985)Google Scholar
  73. 73.
    C.N.R. Rao, R. Voggu, A. Govindaraj, Selective generation of single-walled carbon nanotubes with metallic, semiconducting and other unique electronic properties. Nanoscale 1(1), 96–105 (2009)Google Scholar
  74. 74.
    C. Kane, L. Balents, M.P.A. Fisher, Coulomb interactions and mesoscopic effects in carbon nanotubes. Phys. Rev. Lett. 79, 5086–5089 (1997)Google Scholar
  75. 75.
    R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Electronic structure of chiral graphene tubules. Appl. Phys. Lett. 60(18), 2204–2206 (1992)Google Scholar
  76. 76.
    J.W.G. Wildöer, L.C. Venema, A.G. Rinzler, R.E. Smalley, C. Dekker, Electronic structure of atomically resolved carbon nanotubes. Nature 391(6662), 59–62 (1998)Google Scholar
  77. 77.
    S. Hong, S. Myung, Nanotube electronics: a flexible approach to mobility. Nat. Nanotechnol. 2, 207–208 (2007)Google Scholar
  78. 78.
    J. Han, in Carbon Nanotubes: science and applications, ed. by M. Meyyappan. Structure and Properties of Carbon Nanotubes (CRC Press, Boca Raton, 2004)Google Scholar
  79. 79.
    J.H. Hafner, M.J. Bronikowski, B.R. Azamian, P. Nikolaev, A.G. Rinzler, D.T. Colbert, K.A. Smith, R.E. Smalley, Catalytic growth of single-wall carbon nanotubes from metal particles. Chem. Phys. Lett. 296(1–2), 195–202 (1998)Google Scholar
  80. 80.
    G.Y. Xiong, Y. Suda, D.Z. Wang, J.Y. Huang, Z.F. Ren, Effect of temperature, pressure, and gas ratio of methane to hydrogen on the synthesis of double-walled carbon nanotubes by chemical vapour deposition. Nanotechnology 16(4), 532–535 (2005)Google Scholar
  81. 81.
    O.M. Dunens, K.J. MacKenzie, A.T. Harris, Large-scale synthesis of double-walled carbon nanotubes in fluidized beds. Ind. Eng. Chem. Res. 49(9), 4031–4035 (2010)Google Scholar
  82. 82.
    E. Flahaut, R. Bacsa, A. Peigney, C. Laurent, Gram-scale CCVD synthesis of double-walled carbon nanotubes. Chem. Commun. 2003(12), 1442–1443 (2003)Google Scholar
  83. 83.
    R. Bacon, Growth, structure, and properties of graphite whiskers. J. Appl. Phys. 31(2), 283–290 (1960)Google Scholar
  84. 84.
    H. Cui, X. Yang, M.L. Simpson, D.H. Lowndes, M. Varela, Initial growth of vertically aligned carbon nanofibers. Appl. Phys. Lett 84(20), 4077–4079 (2004)Google Scholar
  85. 85.
    W. Li, J. Wen, Y. Tu, Z. Ren, Effect of gas pressure on the growth and structure of carbon nanotubes by chemical vapor deposition. Appl. Phys. A 73(2), 259–264 (2001)Google Scholar
  86. 86.
    W. Wang, B. Poudel, D.Z. Wang, Z.F. Ren, Synthesis of multiwalled carbon nanotubes through a modified Wolff-Kishner reduction process. J. Am. Chem. Soc. 127(51), 18018–18019 (2005)Google Scholar
  87. 87.
    W. Li, J. Wen, Z. Ren, Effect of temperature on growth and structure of carbon nanotubes by chemical vapor deposition. Appl. Phys. A 74(3), 397–402 (2002)Google Scholar
  88. 88.
    Y. Ominami, Q. Ngo, A.J. Austin, H. Yoong, C.Y. Yang, A.M. Cassell, B.A. Cruden, J. Li, M. Meyyappan, Structural characteristics of carbon nanofibers for on-chip interconnect applications. Appl. Phys. Lett. 87(23), 233105 (2005)Google Scholar
  89. 89.
    P.L. McEuen, Nanotechnology: carbon-based electronics. Nature 393(6680), 15–17 (1998)Google Scholar
  90. 90.
    R. Saito, G. Dresselhaus, M.S. Dresselhaus, Tunneling conductance of connected carbon nanotubes. Phys. Rev. B 53(4), 2044–2050 (1996)Google Scholar
  91. 91.
    L. Chico, V.H. Crespi, L.X. Benedict, S.G. Louie, M.L. Cohen, Pure carbon nanoscale devices: nanotube heterojunctions. Phys. Rev. Lett. 76(6), 971–974 (1996)Google Scholar
  92. 92.
    Z. Yao, H.W.C. Postma, L. Balents, C. Dekker, Carbon nanotube intramolecular junctions. Nature 402(6759), 273–276 (1999)Google Scholar
  93. 93.
    Y. Yao, Q. Li, J. Zhang, R. Liu, L. Jiao, Y.T. Zhu, Z. Liu, Temperature-mediated growth of single-walled carbon-nanotube intramolecular junctions. Nat. Mater. 6(4), 283–286 (2007)Google Scholar
  94. 94.
    M.S. Fuhrer, J. Nygård, L. Shih, M. Forero, Y.-G. Yoon, M.S.C. Mazzoni, H.J. Choi, J. Ihm, S.G. Louie, A. Zettl, P.L. McEuen, Crossed nanotube junctions. Science 288(5465), 494–497 (2000)Google Scholar
  95. 95.
    P.R. Bandaru, Electrical characterization of carbon nanotube Y-junctions: a foundation for new nanoelectronics. J. Mater. Sci. 42(5), 1809–1818 (2007)Google Scholar
  96. 96.
    P. Nagy, R. Ehlich, L. Biró, J. Gyulai, Y-branching of single walled carbon nanotubes. Appl. Phys. A 70(4), 481–483 (2000)Google Scholar
  97. 97.
    S. Itoh, S. Ihara, J.-I. Kitakami, Toroidal form of carbon \({\rm C}_{360}\). Phys. Rev. B 47(3), 1703–1704 (1993)Google Scholar
  98. 98.
    S. Ihara, S. Itoh, J.-I. Kitakami, Toroidal forms of graphitic carbon. Phys. Rev. B 47, 12908–12911 (1993)Google Scholar
  99. 99.
    B.I. Dunlap, Connecting carbon tubules. Phys. Rev. B 46(3), 1933–1936 (1992)Google Scholar
  100. 100.
    B.I. Dunlap, Relating carbon tubules. Phys. Rev. B 49(8), 5643–5651 (1994)Google Scholar
  101. 101.
    A. Fonseca, K. Hernadi, J. Nagy, P. Lambin, A. Lucas, Growth mechanism of coiled carbon nanotubes. Synth. Met. 77(1–3), 235–242 (1996)Google Scholar
  102. 102.
    M. Sano, A. Kamino, J. Okamura, S. Shinkai, Ring closure of carbon nanotubes. Science 293(5533), 1299–1301 (2001)Google Scholar
  103. 103.
    J. Liu, H. Dai, J.H. Hafner, D.T. Colbert, R.E. Smalley, S.J. Tans, C. Dekker, Fullerene ‘crop circles’. Nature 385, 780–781 (1997)Google Scholar
  104. 104.
    R. Martel, H.R. Shea, P. Avouris, Rings of single-walled carbon nanotubes. Nature 398, 299 (1999)Google Scholar
  105. 105.
    M-F. Yu, B.S. Files, S. Arepalli, R.S. Ruoff, Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84(24), 5552–5555 (2000)Google Scholar
  106. 106.
    H.R. Shea, R. Martel, P. Avouris, Electrical transport in rings of single-wall nanotubes: one-dimensional localization. Phys. Rev. Lett. 84(19), 4441–4444 (2000)Google Scholar
  107. 107.
    L. Ci, B. Wei, C. Xu, J. Liang, D. Wu, S. Xie, W. Zhou, Y. Li, Z. Liu, D. Tang, Crystallization behavior of the amorphous carbon nanotubes preparedby the CVD method. J. Cryst. Growth 233, 823–828 (2001)Google Scholar
  108. 108.
    H. Nishino, R. Nishida, T. Matsui, N. Kawase, I. Mochida, Growth of amorphous carbon nanotube from poly(tetrafluoroethylene) and ferrous chloride. Carbon 41(14), 2819–2823 (2003)Google Scholar
  109. 109.
    T. Luo, L. Chen, K. Bao, W. Yu, Y. Qian, Solvothermal preparation of amorphous carbon nanotubes and Fe/C coaxial nanocables from sulfur, ferrocene, and benzene. Carbon 44(13), 2844–2848 (2006)Google Scholar
  110. 110.
    J. Li, C. Papadopoulos, J.M. Xu, M. Moskovits, Highly-ordered carbon nanotube arrays for electronics applications. Appl. Phys. Lett. 75(3), 367–369 (1999)Google Scholar
  111. 111.
    Y.F. Hu, X.L. Liang, Q. Chen, L-M. Peng, Z.D. Hu, Electrical characteristics of amorphous carbon nanotube and effects of contacts. Appl. Phys. Lett. 88(6), 063113 (2006)Google Scholar
  112. 112.
    W.Y. Jang, N.N. Kulkarni, C.K. Shih, Z. Yao, Electrical characterization of individual carbon nanotubes grown in nanoporous anodic alumina templates. Appl. Phys. Lett. 84(7), 1177–1179 (2004)Google Scholar
  113. 113.
    M. Terrones, Science and technology of the twenty-first century: synthesis, properties, and applications of carbon nanotubes. Annu. Rev. Mater. Res. 33, 419–501 (2003)Google Scholar
  114. 114.
    N. Grobert, M. Terrones, S. Trasobares, K. Kordatos, H. Terrones, J. Olivares, J. Zhang, P. Redlich, W. Hsu, C. Reeves, D. Wallis, Y. Zhu, J. Hare, A. Pidduck, H. Kroto, D. Walton, A novel route to aligned nanotubes and nanofibres using laser-patterned catalytic substrates. Appl. Phys. A: Mater. 70(2), 175–183 (2000)Google Scholar
  115. 115.
    S. Amelinckx, X.B. Zhang, D. Bernaerts, X.F. Zhang, V. Ivanov, J.B. Nagy, A formation mechanism for catalytically grown helix-shaped graphite nanotubes. Science 265(5172), 635–639 (1994)Google Scholar
  116. 116.
    H. Hou, Z. Jun, F. Weller, A. Greiner, Large-scale synthesis and characterization of helically coiled carbon nanotubes by use of \(\text{Fe(CO)}_5\) as floating catalyst precursor. Chem. Mater. 15(16), 3170–3175 (2003)Google Scholar
  117. 117.
    K. Lau, C. Gu, D. Hui, A critical review on nanotube and nanotube/nanoclay related polymer composite materials. Compos. Part B Eng. 37(6), 425–36 (2006)Google Scholar
  118. 118.
    M.J. Hanus, A.T. Harris, Synthesis, characterisation and applications of coiled carbon nanotubes. J. Nanosci. Nanotechnol. 10(4), 2261–2283 (2010)Google Scholar
  119. 119.
    R.S. Ruoff, J. Tersoff, D.C. Lorents, S. Subramoney, B. Chan, Radial deformation of carbon nanotubes by van der Waals forces. Nature 364, 514–516 (1993)Google Scholar
  120. 120.
    N.G. Chopra, L.X. Benedict, V.H. Crespi, M.L. Cohen, S.G. Louie, A. Zettl, Fully collapsed carbon nanotubes. Nature 377(6545), 135–138 (1995)Google Scholar
  121. 121.
    L.X. Benedict, N.G. Chopra, M.L. Cohen, A. Zettl, S.G. Louie, V.H. Crespi, Microscopic determination of the interlayer binding energy in graphite. Chem. Phys. Lett. 286(5–6), 490–496 (1998)Google Scholar
  122. 122.
    S. Liu, J. Yue, R.J. Wehmschulte, Large thick flattened carbon nanotubes. Nano Lett. 2(12), 1439–1442 (2002)Google Scholar
  123. 123.
    W.Z. Li, X. Yan, K. Kempa, Z.F. Ren, M. Giersig, Structure of flattened carbon nanotubes. Carbon 45(15), 2938–2945 (2007)Google Scholar
  124. 124.
    B.W. Smith, M. Monthioux, D.E. Luzzi, Encapsulated \({\rm C}_{60}\) in carbon nanotubes. Nature 396(6709), 323–324 (1998)Google Scholar
  125. 125.
    K. Hirahara, K. Suenaga, S. Bandow, H. Kato, T. Okazaki, H. Shinohara, S. Iijima, One-dimensional metallofullerene crystal generated inside single-walled carbon nanotubes. Phys. Rev. Lett. 85(25), 5384–5387 (2000)Google Scholar
  126. 126.
    K. Suenaga, M. Tencé, C. Mory, C. Colliex, H. Kato, T. Okazaki, H. Shinohara, K. Hirahara, S. Bandow, S. Iijima, Element-selective single atom imaging. Science 290(5500), 2280–2282 (2000)Google Scholar
  127. 127.
    K. Suenaga, R. Taniguchi, T. Shimada, T. Okazaki, H. Shinohara, S. Iijima, Evidence for the intramolecular motion of Gd atoms in a \(\text{Gd}_2\) \(\text{C}_{92}\) nanopeapod. Nano Lett. 3(10), 1395–1398 (2003)Google Scholar
  128. 128.
    R. Li, X. Sun, X. Zhou, M. Cai, X. Sun, Aligned heterostructures of single-crystalline tin nanowires encapsulated in amorphous carbon nanotubes. J. Phys. Chem. C 111(26), 9130–9135 (2007)Google Scholar
  129. 129.
    Y. Gao, Y. Bando, Carbon nanothermometer containing gallium. Nature 415, 599 (2002)Google Scholar
  130. 130.
    Y. Gogotsi, J.A. Libera, M. Yoshimura, Hydrothermal synthesis of multiwall carbon nanotubes. J. Mater. Res. 15(12), 2591–2594 (2000)Google Scholar
  131. 131.
    D. Mattia, Y. Gogotsi, Review: static and dynamic behavior of liquids inside carbon nanotubes. Microfluid. Nanofluid. 5(3), 289–305 (2008)Google Scholar
  132. 132.
    S.B. Chikkannanavar, B.W. Smith, D.E. Luzzi, in Carbon Nanotubes Properties and Applications, ed. by M.J.O’Connell. Carbon Nanotube Peapod Materials (CRC Press, Taylor& Francis, Boca Raton, 2006)Google Scholar
  133. 133.
    R. Kitaura, H. Shinohara, Carbon-nanotube-based hybrid materials: nanopeapods. Chem. Asian J. 1(5), 646–655 (2006)Google Scholar
  134. 134.
    M. Monthioux, Filling single-wall carbon nanotubes. Carbon 40(10), 1809–1823 (2002)Google Scholar
  135. 135.
    E. González Noya, D. Srivastava, L.A. Chernozatonskii, M. Menon, Thermal conductivity of carbon nanotube peapods. Phys. Rev. B 70(11), 115416 (2004)Google Scholar
  136. 136.
    G.G. Tibbetts, Carbon fibers produced by pyrolysis of natural gas in stainless steel tubes. Appl. Phys. Lett. 42(8), 666–668 (1983)Google Scholar
  137. 137.
    M. Inagaki, New Carbon: control of structure and functions. (Elsevier Science, Amsterdam, 2000)Google Scholar
  138. 138.
    S. Hofmann, C. Ducati, J. Robertson, B. Kleinsorge, Low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 83(1), 135–137 (2003)Google Scholar
  139. 139.
    A.V. Melechko, V.I. Merkulov, T.E. McKnight, M.A. Guillorn, K.L. Klein, D.H. Lowndes, M.L. Simpson, Vertically aligned carbon nanofibers and related structures: controlled synthesis and directed assembly. J. Appl. Phys. 97(4), 041301/1–041301/39 (2005)Google Scholar
  140. 140.
    M. Tanemura, T. Okita, J. Tanaka, M. Kitazawa, K. Itoh, L. Miao, S. Tanemura, S.P. Lau, H.Y. Yang, L. Huang, Room-temperabutre growth and applications of carbon nanofibers: a review. IEEE Trans. Nanotechnol. 5(5), 587–594 (2006)Google Scholar
  141. 141.
    S. Iijima, Direct observation of the tetrahedral bonding in graphitized carbon black by high resolution electron microscopy. J. Cryst. Growth 50(3), 675–683 (1980)Google Scholar
  142. 142.
    N. Sano, H. Wang, M. Chhowalla, I. Alexandrou, G.A.J. Amaratunga, Synthesis of carbon ‘onions’ in water. Nature 414, 506–507 (2001)Google Scholar
  143. 143.
    D. Ugarte, Curling and closure of graphitic networks udner electron-beam irradiation. Nature 359, 707 (1992)Google Scholar
  144. 144.
    D. Ugarte, Formation mechanism of quasi-spherical carbon particles induced by electron bombardment. Chem. Phys. Lett. 207, 473 (1993)Google Scholar
  145. 145.
    M. Ge, K. Dattler, Observation of fullerene cones. Chem. Phys. Lett. 220, 192 (1994)Google Scholar
  146. 146.
    A. Krishman, E. Dujardin, M.M.J. Treacy, J. Jugdahl, S. Lynum, T.W. Ebbesen, Graphitic cones and the nucleation of curved carbon surfaces. Nature 388, 451 (1997)Google Scholar
  147. 147.
    S. Iijima, M. Yudasaka, R. Yamada, S. Bandow, K. Suenaga, F. Kokai, K. Takahashi, Nano-aggregates of single-walled graphitic carbon nano-horns. Chem. Phys. Lett. 309(3–4), 165–170 (1999)Google Scholar
  148. 148.
    S.G. Louie, in Carbon Nanotubes: synthesis, structure, properties, and applications, ed. by M.S. Dresselhaus, G. Dresselhaus, P. Avouris. Electronic Properties, Junctions, and Defects of Carbon Nanotubes, Topics in Applied Physics, vol. 80 (Springer, Berlin, 2001) pp. 113–146Google Scholar
  149. 149.
    Z. Yao, C. Dekker, P. Avouris, in Carbon Nanotubes: synthesis, structure, properties, and applications, ed. by M.S. Dresselhaus, G. Dresselhaus, P. Avouris. Electronic Transport Through Single-Wall Carbon Nanotubes, Topics in Applied Physics, vol. 80 (Springer, Berlin, 2001) pp. 147–172Google Scholar
  150. 150.
    L. Forró, C. Schönenberger, in Carbon Nanotubes: synthesis, structure, properties, and applications, ed by M.S. Dresselhaus, G. Dresselhaus, P. Avouris. Physical Properties of Multi-Wall Nanotubes, Topics in Applied Physics, vol. 80 (Springer, Berlin, 2001) pp. 329–390Google Scholar
  151. 151.
    J. Bernholc, D. Brenner, M.B. Nardelli, V. Meunier, C. Roland, Mechanical and electrical properties of nanotubes. Annu. Rev. Mater. Res. 32, 347–375 (2002)Google Scholar
  152. 152.
    V.N. Popov, Carbon nanotubes: properties and application. Mat. Sci. Eng. R Rep. 43(3), 61–102 (2004)Google Scholar
  153. 153.
    M. Dresselhaus, G. Dresselhaus, A. Jorio, Unusual properties and structure of carbon nanotubes. Annu. Rev. Mater. Res. 34(1), 247–278 (2004)Google Scholar
  154. 154.
    M. Burghard, Electronic and vibrational properties of chemically modified single-wall carbon nanotubes. Surf. Sci. Rep. 58(1–4), 1–109 (2005)Google Scholar
  155. 155.
    P. Avouris, J. Chen, Nanotube electronics and optoelectronics. Mater. Today 9, 46–54 (2006)Google Scholar
  156. 156.
    P. Avouris, Z.H. Chen, V. Perebeinos, Carbon-based electronics. Nat. Nanotechnol. 2, 605–615 (2007)Google Scholar
  157. 157.
    P. Avouris, M. Freitag, V. Perebeinos, Carbon-nanotube photonics and optoelectronics. Nat. Photonics 2(6), 341–350 (2008)Google Scholar
  158. 158.
    C.N.R. Rao, B.C. Satishkumar, A. Govindaraj, M. Nath, Nanotubes. Chem. Phys. Chem. 2, 78–105 (2001)Google Scholar
  159. 159.
    M.S. Dresselhaus, P.C. Eklund, Phonons in carbon nanotubes. Adv. Phys. 49(6), 705–814 (2000)Google Scholar
  160. 160.
    R. Saito, H. Kataura, in Carbon Nanotubes: synthesis, structure, properties, and applications, ed. by M.S. Dresselhaus, G. Dresselhaus, P. Avouris. Optical Properties and Raman Spectroscopy of Carbon Nanotubes, Topics in Applied Physics, vol. 80 (Springer, Berlin, 2001) pp. 213–246Google Scholar
  161. 161.
    H. Dai, Carbon nanotubes: opportunities and challenges. Surf. Sci. 500(1–3), 218–241 (2002)Google Scholar
  162. 162.
    M. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Raman spectroscopy of carbon nanotubes. Phys. Rep. 409(2), 47–99 (2005)Google Scholar
  163. 163.
    J.J. Zhao, X.S. Chen, J.R.H. Xie, Optical properties and photonic devices of doped carbon nanotubes. Anal. Chim. Acta 568(1–2), 161–170 (2006)Google Scholar
  164. 164.
    M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Exciton photophysics of carbon nanotubes. Annu. Rev. Phys. Chem. 58, 719–747 (2007)Google Scholar
  165. 165.
    M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, R. Saito, Perspectives on carbon nanotubes and graphene raman spectroscopy. Nano Lett. 10(3), 751–758 (2010)Google Scholar
  166. 166.
    R. Saito, M. Hofmann, G. Dresselhaus, A. Jorio, M.S. Dresselhaus, Raman spectroscopy of graphene and carbon nanotubes. Adv. Phys. 60(3), 413–550 (2011)Google Scholar
  167. 167.
    M. Biercuk, S. Ilani, C. Marcus, P. McEuen, in Carbon Nanotubes: advanced topics in the synthesis, structure, properties and applications, ed by A. Jorio, G. Dresselhaus, M.S. Dresselhaus. Electrical Transport in Single-Wall-Carbon-Nanotubes, Topics in Applied Physics, vol. 111 (Springer, Heidelberg, 2008) pp. 455–493Google Scholar
  168. 168.
    J. Hone, in Carbon Nanotubes: synthesis, structure, properties, and applications, ed by M.S. Dresselhaus, G. Dresselhaus, P. Avouris. Phonons and Thermal Properties of Carbon Nanotubes, Topics in Applied Physics, vol. 80 (Springer, Berlin, 2001) pp. 273–286Google Scholar
  169. 169.
    Y. Lan, Y. Wang, Z.F. Ren, Physics and applications of aligned carbon nanotubes. Adv. Phys. 60(4), 553–678 (2011)Google Scholar
  170. 170.
    B.I. Yakobson, P. Avouris, in Carbon Nanotubes: synthesis, structure, properties, and applications, ed by M.S. Dresselhaus, G. Dresselhaus, P. Avouris. Mechanical Properties of Carbon Nanotubes, Topics in Applied Physics, vol. 80 (Springer, Berlin, 2001) pp. 287–328Google Scholar
  171. 171.
    J. Kono, S. Roche, in Carbon Nanotubes Properties and Applications, ed by M.J. O’Connell. Magnetic Properties (CRC Press/Taylor & Francis, Boca Raton/FL, 2006) pp. 119–152Google Scholar
  172. 172.
    S.K. Doorn, D. Heller, M. Usrey, P. Barone, M.S. Strano, in Carbon Nanotubes Properties and Applications, ed by M.J. O’Connell. Raman Spectroscopy of Single-Walled Carbon Nanotubes: probing electronic and chemical behavior (CRC Press/Taylor & Francis, Boca Raton/FL, 2006) pp. 153–186Google Scholar
  173. 173.
    R.F. Gibson, E.O. Ayorinde, Y.F. Wen, Vibrations of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 67(1), 1–28 (2007)Google Scholar
  174. 174.
    S. Kilina, S. Tretiak, Excitonic and vibrational properties of single-walled semiconducting carbon nanotubes. Adv. Funct. Mater. 17(17), 3405–3420 (2007)Google Scholar
  175. 175.
    M. Daenen, R.D. de Fouw, B. Hamers, P.G.A. Janssen, K. Schouteden, M.A.J. Veld, The wondrous world of carbon nanotubes: a review of current carbon nanotube technologies. Technical report, Eindhoven University of Technology, 2003Google Scholar
  176. 176.
    P. Bernier, D. Carroll, G. Kim, S. Roth (eds.), Nanotube-Based Devices, Materials Research Society Symposium Proceedings. Materials Research Society, vol. 772 (2003)Google Scholar
  177. 177.
    C.P. Collier, in Carbon Nanotubes Properties and Applications, ed by M.J. O’Connell. Carbon Nanotube Tips for Scanning Probe Microscopy, (CRC Press/Taylor & Francis, Boca Raton/FL, 2006) pp. 295–309Google Scholar
  178. 178.
    P.R. Bandaru, Electrical properties and applications of carbon nanotube structures. J. Nanosci. Nanotechnol. 7(4–5), 1239–1267 (2007)Google Scholar
  179. 179.
    H.W. Zhu, C.L. Xu, D.H. Wu, B.Q. Wei, R. Vajtai, P.M. Ajayan, Direct synthesis of long single-walled carbon nanotube strands. Science 296(5569), 884–886 (2002)Google Scholar
  180. 180.
    Z.W. Pan, S.S. Xie, B.H. Chang, C.Y. Wang, L. Lu, W. Liu, W.Y. Zhou, W.Z. Li, L.X. Qian, Very long carbon nanotubes. Nature 394(6694), 631–632 (1998)Google Scholar
  181. 181.
    M.B. Jakubinek, M.A. White, G. Li, C. Jayasinghe, W. Cho, M.J. Schulz, V. Shanov, Thermal and electrical conductivity of tall, vertically aligned carbon nanotube arrays. Carbon 48(13), 3947–3952 (2010)Google Scholar
  182. 182.
    J. Hone, M.C. Llaguno, N.M. Nemes, A.T. Johnson, J.E. Fischer, D.A. Walters, M.J. Casavant, J. Schmidt, R.E. Smalley, Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films. Appl. Phys. Lett. 77(5), 666–668 (2000)Google Scholar
  183. 183.
    J.E. Fischer, W. Zhou, J. Vavro, M.C. Llaguno, C. Guthy, R. Haggenmueller, M.J. Casavant, D.E. Walters, R.E. Smalley, Magnetically aligned single wall carbon nanotube films: preferred orientation and anisotropic transport properties. J. Appl. Phys. 93(4), 2157–2163 (2003)Google Scholar
  184. 184.
    Q. Wang, J. Dai, W. Li, Z. Wei, J. Jiang, The effects of CNT alignment on electrical conductivity and mechanical properties of SWNT/epoxy nanocomposites. Compos. Sci. Technol. 68(7–8), 1644–1648 (2008)Google Scholar
  185. 185.
    E. Pop, D. Mann, Q. Wang, K. Goodson, H. Dai, Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 6(1), 96–100 (2006)Google Scholar
  186. 186.
    S. Berber, Y.-K. Kwon, D. Tománek, Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 84(20), 4613–4616 (2000)Google Scholar
  187. 187.
    W. Yi, L. Lu, D.-l. Zhang, Z. W. Pan, S. S. Xie, Linear specific heat of carbon nanotubes. Phys. Rev. B 59(14), R9015–R9018 (1999)Google Scholar
  188. 188.
    D.J. Yang, Q. Zhang, G. Chen, S.F. Yoon, J. Ahn, S.G. Wang, Q. Zhou, Q. Wang, J.Q. Li, Thermal conductivity of multiwalled carbon nanotubes. Phys. Rev. B 66(16), 165440 (2002)Google Scholar
  189. 189.
    X. Wang, Z. Zhong, J. Xu, Noncontact thermal characterization of multiwall carbon nanotubes. J. Appl. Phys. 97(6), 064302 (2005)Google Scholar
  190. 190.
    T. Borca-Tasciuc, S. Vafaei, D.-A. Borca-Tasciuc, B.Q. Wei, R. Vajtai, P.M. Ajayan, Anisotropic thermal diffusivity of aligned multiwall carbon nanotube arrays. J. Appl. Phys. 98(5), 054309 (2005)Google Scholar
  191. 191.
    O. Chauvet, L. Forro, W. Bacsa, D. Ugarte, B. Doudin, W.A. de Heer, Magnetic anisotropies of aligned carbon nnaotubes. Phys. Rev. B 52, R6963 (1995)Google Scholar
  192. 192.
    J.P. Lu, Novel magnetic properties of carbon nanotubes. Phys. Rev. Lett. 74(7), 1123–1126 (1995)Google Scholar
  193. 193.
    X.K. Wang, R.P.H. Chang, A. Patashinski, J.B. Ketterson, Magnetic susceptibility of buckytubes. J. Mater. Res. 9(6), 1578–1582 (1994)Google Scholar
  194. 194.
    A.P. Ramirez, R.C. Haddon, O. Zhou, R.M. Fleming, J. Zhang, S.M. McClure, R.E. Smalley, Magnetic susceptibility of molecular carbon: Nanotubes and fullerite. Science 265(5168), 84–86 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of PhysicsBoston CollegeChestnut HillUSA
  2. 2.Department of PhysicsBoston CollegeChestnut HillUSA
  3. 3.Institute for Advanced Materials, Academy of Advanced OptoelectronicsSouth China Normal UniversityGuangzhouPeople’s Republic of China

Personalised recommendations