Privacy-Preserving Data Mining Techniques: Survey and Challenges

Part of the Studies in Applied Philosophy, Epistemology and Rational Ethics book series (SAPERE, volume 3)

Abstract

This chapter presents a brief summary and review of Privacy-preserving Data Mining (PPDM). The review of the existing approaches is structured along a tentative taxonomy of PPDM as a field. The main axes of this taxonomy specify what kind of data is being protected, and what is the ownership of the data (centralized or distributed). We comment on the relationship between PPDM and preventing discriminatory use of data mining techniques. We round up the chapter by discussing some of the new, arising challenges before PPDM as a field.

Keywords

Data Mining Association Rule Data Privacy Association Rule Mining Encrypt Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aggarwal, C.C., Yu, P.S.: A framework for condensation-based anonymization of string data. Data Mining and Knowledge Discovery 16, 251–275 (2008)MathSciNetCrossRefGoogle Scholar
  2. Agrawal, R., Srikant, R.: Privacy-preserving data mining. ACM SIGMOD Record 29, 439–450 (2000)CrossRefGoogle Scholar
  3. Atzori, M., Bonchi, F., et al.: Anonymity preserving pattern discovery. VLDB Journal 17(4), 703–727 (2008)CrossRefGoogle Scholar
  4. Bonizzoni, P., Della Vedova, G., Dondi, R.: The k-Anonymity Problem is Hard. In: Kutyłowski, M., Charatonik, W., Gębala, M. (eds.) FCT 2009. LNCS, vol. 5699, pp. 26–37. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. Chen, B.-C., Kifer, D., et al.: Privacy-Preserving Data Publishing. Found Trends Databases 2(1-2), 1–167 (2009)CrossRefGoogle Scholar
  6. Chen, B.-C., LeFevre, K., et al.: Privacy skyline: privacy with multidimensional adversarial knowledge. In: Proceedings of the 33rd International Conference on Very Large Data Bases, Vienna, Austria. VLDB Endowment (2007)Google Scholar
  7. Ciriani, V., Capitani di Vimercati, S., et al.: k-Anonymity. Secure Data Management in Decentralized Systems 33, 323–353 (2007)CrossRefGoogle Scholar
  8. El Emam, K., Dankar, F.K., et al.: A Globally Optimal k-Anonymity Method for the De-Identification of Health Data. Journal of the American Medical Informatics Association 16(5), 670–682 (2009)CrossRefGoogle Scholar
  9. Fang, L., Kim, H., et al.: A privacy recommendation wizard for users of social networking sites. In: Proceedings of the 17th ACM Conference on Computer and Communications Security, Chicago, Illinois, USA. ACM (2010)Google Scholar
  10. Fung, B.C.M., Wang, K., et al.: Privacy-preserving data publishing: A survey of recent developments. ACM Comput. Surv. 42(4), 1–53 (2010)CrossRefGoogle Scholar
  11. Gentry, C.: Computing arbitrary functions of encrypted data. Commun. ACM 53(3), 97–105 (2010)CrossRefGoogle Scholar
  12. Giannotti, F., Pedreschi, D., Turini, F.: Mobility, Data Mining and Privacy the Experience of the GeoPKDD Project. In: Bonchi, F., Ferrari, E., Jiang, W., Malin, B. (eds.) PinKDD 2008. LNCS, vol. 5456, pp. 25–32. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. Hay, M., Miklau, G., et al.: Resisting structural re-identification in anonymized social networks. Proc. VLDB Endow. 1(1), 102–114 (2008)Google Scholar
  14. Kargupta, H., Datta, S., et al.: On the privacy preserving properties of random data perturbation techniques. In: Third IEEE International Conference on Data Mining, ICDM 2003, pp. 99–106 (2003)Google Scholar
  15. Muralidhar, K., Sarathy, R.: Transactions on Data Privacy 1(1), 17–33 (2008)MathSciNetGoogle Scholar
  16. Kun, L., Kargupta, H., et al.: Random projection-based multiplicative data perturbation for privacy preserving distributed data mining. IEEE Transactions on Knowledge and Data Engineering 18(1), 92–106 (2006)CrossRefGoogle Scholar
  17. Li, N., Li, T.: t-Closeness: Privacy Beyond k-Anonymity and ℓ-Diversity. In: Proceedings of IEEE International Conference on Data Engineering (2007)Google Scholar
  18. Lindell, Y., Pinkas, B.: Secure Multiparty Computation for Privacy-Preserving Data Mining. Journal of Privacy and Confidentiality 1(1), 59–98 (2009)Google Scholar
  19. Liu, K., Terzi, E.: Towards identity anonymization on graphs. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, Vancouver. ACM (2008)Google Scholar
  20. Loukides, G., Gkoulalas-Divanis, A., Shao, J.: Anonymizing Transaction Data to Eliminate Sensitive Inferences. In: Bringas, P.G., Hameurlain, A., Quirchmayr, G. (eds.) DEXA 2010. LNCS, vol. 6261, pp. 400–415. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. Martin, D.J., Kifer, D., et al.: Worst-Case Background Knowledge for Privacy-Preserving Data Publishing. In: IEEE 23rd International Conference on Data Engineering, ICDE 2007 (2007)Google Scholar
  22. Mohammed, N., Fung, B.C.M., et al.: Anonymizing healthcare data: a case study on the blood transfusion service. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France. ACM (2009)Google Scholar
  23. Moor, J.: Towards a theory of privacy in the information age. In: Bynum, T., Rodgerson, S. (eds.) Computer Ethics and Professional Responsibility. Blackwell Publishing (2004)Google Scholar
  24. Nin, J., Herranz, J., et al.: Rethinking rank swapping to decrease disclosure risk. Data Knowl. Eng. 64(1), 346–364 (2008)CrossRefGoogle Scholar
  25. Oliveira, S.R.M., Zaïane, O.R., Saygın, Y.: Secure Association Rule Sharing. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 74–85. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  26. Paillier, P.: The 26th International Conference on Privacy and Personal Data Protection. In: Advances in Cryptography - EUROCRYPT 1999, pp. 23–38 (1999)Google Scholar
  27. Sweeney, L.: Datafly: A System for Providing Anonymity in Medical Data. In: Proceedings of the IFIP TC11 WG11.3 Eleventh International Conference on Database Securty XI: Status and Prospects, pp. 356–381 (1998)Google Scholar
  28. Sweeney, L.: Computational Disclosure Control: A Primer on Data Privacy Protection, Ph.D. thesis. Massachusetts Institute of Technology (2001)Google Scholar
  29. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 10(5), 557–570 (2002)MathSciNetMATHCrossRefGoogle Scholar
  30. Vaidya, J., Clifton, C.: Privacy-preserving k-means clustering over vertically partitioned data. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, D.C., ACM (2003)Google Scholar
  31. Vaidya, J., Clifton, C., et al.: Privacy-preserving decision trees over vertically partitioned data. ACM Trans. Knowl. Discov. Data 2(3), 1–27 (2008)CrossRefGoogle Scholar
  32. Vaidya, J., Zhu, Y.M., et al.: Privacy Preserving Data Mining. Springer (2006)Google Scholar
  33. Verykios, V.S., Elmagarmid, A.K., et al.: Association Rule Hiding. IEEE Trans. on Knowl. and Data Eng. 16(4), 434–447 (2004)CrossRefGoogle Scholar
  34. Wang, D., Pedreschi, D., et al.: Human mobility, social ties, and link prediction. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, California, USA, pp. 1100–1108. ACM (2011)Google Scholar
  35. Yang, Z., Wright, R.N.: Privacy-Preserving Computation of Bayesian Networks on Vertically Partitioned Data. IEEE Trans. on Knowl. and Data Eng. 18(9), 1253–1264 (2006)CrossRefGoogle Scholar
  36. Yang, Z., Wright, R.N., et al.: Experimental analysis of a privacy-preserving scalar product protocol. Comput. Syst. Sci. Eng. 21(1) (2006)Google Scholar
  37. Zhan, J., Chang, L., et al.: Privacy preserving k-nearest neighbor classification. International Journal of Network Security (1), 46–51 (2005)Google Scholar
  38. Zhan, J., Matwin, S.: Privacy-preserving support vector machine classification. International Journal of Intelligent Information and Database Systems 1(3-4), 365–385 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.University of OttawaOttawaCanada

Personalised recommendations